Randomized Algorithm for the Detour of a Polygonal Chain

A polygonal chain C
The detour $\delta_{C}(p, q)$ of C on the pair (p, q) :

$$
\delta_{C}(p, q)=\frac{\left|C_{p}^{q}\right|}{|p q|},
$$

where C_{p}^{q} is the simple path from p to q in C.

$$
\begin{gathered}
\text { The detour } \delta_{C} \text { of } C \\
\delta_{C}=\max _{p, q \in C} \delta_{C}(p, q) .
\end{gathered}
$$

For simplicity, we use $\delta(p, q)$ to represent $\delta_{C}(p, q)$

General Idea

- Target is to find the maximal detour pair $(p, q) \in V \times C$ instead of $C \times C$, where V is the set of polygonal vertices of C
- Orient C from p_{0} to p_{n-1}.
- Develop a decision algorithm that for a given parameter $\kappa \geq 1$, determines whether for all pairs $(p, q) \in V \times C$, so that p lies before q, the inequality $\delta(p, q) \leq \kappa$ holds. (By reversing the orientation of C and repeating the same algorithm once more, we can also determine the case in which p lies after q.)
- Apply Chan's randomized technique to turn the decision algorithm into an optimization one.

For a point $p \in C$, we define the weight $w(p)$ of p

$$
w(p)=\frac{\left|C_{p_{0}}^{p}\right|}{\kappa} .
$$

Trick:

$$
\begin{gathered}
\delta(p, q) \leq \kappa \\
\leftrightarrow \frac{\left|C_{p}^{q}\right|}{|p q|}=\frac{\left|C_{p_{0}}^{q}\right|-\left|C_{p_{0}}^{p}\right|}{|p q|} \leq \kappa \\
\leftrightarrow \frac{\left|C_{p_{0}}^{q}\right|}{\kappa} \leq|p q|+\frac{\left|C_{p_{0}}^{p}\right|}{\kappa} \\
\leftrightarrow w(q) \leq|p q|+w(p)
\end{gathered}
$$

Lead to a geometric interpretation

Geometric Interpretation:

- Let K denote the cone $z=\sqrt{x^{2}+y^{2}}$ in \mathbb{E}^{3}.
- Map each point $p=\left(x_{p}, y_{p}\right) \in V$ to the cone $K_{p}=K+\left(x_{p}, y_{p}, w(p)\right)$
- Also regard K_{p} as the graph of a bivariable function such that for any point $q \in \mathbb{E}^{2}, K_{p}(q)=|p q|+w(p)$. In other words, $K_{p}(q)$ is the distance between q and its vertical projection on K_{p}. Sometimes, $K_{p}(q)$ also means the vertical projection point from q onto K_{p}.
- Let $\mathfrak{K}=\left\{K_{p} \mid p \in V\right\}$
- Map all points $q=\left(x_{q}, y_{q}\right) \in C$ to the point $\hat{q}=\left(x_{q}, y_{q}, w(q)\right)$ in \mathbb{E}^{3}.
- For any subchain π of C, we define $\hat{\pi}=\{\hat{q} \mid q \in \pi\}$

Lemm 1

For any point $q \in C$ and a vertex $p \in V$ that lies before q on C,

$$
\begin{gathered}
\delta(p, q) \leq \kappa \\
\text { if and only if } \\
\hat{q} \text { lies below the cone } K_{p}
\end{gathered}
$$

proof

$$
\begin{gathered}
\delta(p, q) \leq \kappa \Leftrightarrow w(q) \leq w(p)+|p q| \\
\Leftrightarrow \hat{q} \text { is below } K_{p}
\end{gathered}
$$

Lemma 1 implies:
$\delta\left(\{q\}, V_{q}\right) \leq \kappa$, where V_{q} denotes the set of all vertices $p \in V$ that precedes q along C, if and only if \hat{q} lies on or below each of the cones in \mathcal{K}, i.e., if and only if \hat{q} lies on or below the lower envelope of \mathcal{K}

- Since the cones K_{p} are erected on the chain \hat{C}, the point \hat{q}, for any $q \in C$, always lies below all the cones erected on vertices appearing after q on P.

Fact

$\delta_{C} \leq \kappa$ if and only if \hat{C} lies below the lower evenlope of \mathcal{K}.
Additively Weighted Voronoi diagram:
Given a set S of n sites with weights $w(p)$ for $\forall p \in S$, the additively weighted Voronoi diagram $\operatorname{Vor}_{w}(S)$ partitions the plane into $\operatorname{Voronoi}^{\text {regions }} \operatorname{Vor}_{w}(p, S)$ such that all points in $\operatorname{Vor}_{w}(p, S)$ share the same nearest site in S under the weighted distance.

- For a point $x \in \mathbb{R}^{2}$ and a site $p \in S$, the weighted distance $d_{w}(x, p)$ is $d(x, p)+w(p)$
- $\operatorname{Vor}_{w}(V)$ is the projection of the lower evenlope of \mathcal{K} onto the $x y$-plane.
- $O(n \log n)$ construction time

Fact

A point $q \in C$ lies in $\operatorname{Vor}_{w}(p, V)$ if and only if $K_{p}(q)=\min _{p^{\prime} \in V} K_{p^{\prime}}(q)$

Partition C into a family E of maximal connected subchains so that each subchain lies within a single Voronoi region of $\operatorname{Vor}_{w}(V)$.

- If $\operatorname{Vor}_{w}(p, V)$ is non-empty, p lies in $\operatorname{Vor}_{w}(p, V)$.
- Every subchain in E either is a segment or consists of two segment incidents to $p \in V$.
- For each segment $e \in E$, if e lies in $\operatorname{Vor}_{w}(p, V)$, it takes $O(1)$ to decide whether \hat{e} lies fully below K_{p}
- Since $|E|$ is quadratic in the worst case, this method still takes $O\left(n^{2}\right)$ time

Fact (a review)
The maximum dilation can be attained by a co-visiale vertex-edge cut.

- Let \mathfrak{A} be the arrangement formed by C and $\operatorname{Vor}_{w}(V)$
- For each $p \in V$, let f_{p} be the face in \mathfrak{A} containing p.
- For each $p \in V$, let E_{p} be the edges in \mathfrak{A} surrounding f_{p}

Lemma \hat{C} lies below the lower evenlope of \mathcal{K} if and only if $\bigcup_{e \in E_{p}, p \in V} \hat{e}$ lies below the lower evenlope of \mathcal{K}

An $O(n \log n)$-time decision algorithm to decide whether $\delta_{C} \leq \kappa$

1. Compute $\operatorname{Vor}_{w}(V)$ in $O(n \log n)$ time.
2. Compute E_{p} for $\forall p \in V$ in $O(n \log n)$ time. (L. J. Guibas, M. Sharir, S. Sifrony. On the general motion planning problem with two degress of freedom. Discrete Computational Geometry, vol 4., pp. 491-521, 1989.
3. For each vertex $p \in V$ and each edge $e \in E_{p}$, we determine whether \hat{e} lies below C_{p} in $O(1)$
4. Reverse the orientation of C and repeat step 1-3 once.

In order to apply Chan's randomized technique, we need to partition a problem instance.

- Let W be a subset of V, let Q be a subchain of C, and let m be $|W|+|Q|$
- Let $\delta(W, Q)$ be $\min _{p \in W, q \in Q} \delta(p, q)$. (Remember $\delta_{C}=$ $\delta(V, C))$
- However, the maximum dilation pair (p, q) for $\delta(W, Q)$ is not necessarily a co-visible pair.
- Let $\delta^{*}(W, Q)$ be $\sup _{(p, q) \in W \times Q, \overline{p q} \cap Q=\emptyset} \delta(p, q)$.
- $\delta^{*}(p, q) \leq \delta(p, q)$ and If $\delta(W, Q)=\delta(P), \delta^{*}(W, Q)=$ $\delta(W, Q)$
- it takes $O(m)$ time to determine if $\delta^{*}(W, Q) \leq t$.

Compute a pair $(\xi, \eta) \in W \times Q$ such that $\delta^{*}(W, Q) \leq \delta(\xi, \eta) \leq \delta(W, Q)$

- If $\delta(C)=\delta(W, Q), \delta(\xi, \eta)=\delta(C)$
- If $|W|$ or $|Q|$ is a constant, we can compute $\delta(W, Q)$ in constant time and select a pair (ξ, η).
- Otherwies, we parition W into W_{1} and W_{2} of roughly equal size and Q into Q_{1} and Q_{2} of roughly equal size

$$
\begin{gathered}
\delta(W, Q)=\max \left\{\delta\left(W_{1}, Q_{1}\right), \delta\left(W_{2}, Q_{1}\right), \delta\left(W_{1}, Q_{2}\right), \delta\left(W_{2}, Q_{2}\right)\right\} \\
\delta^{*}(W, Q)=\max \left\{\delta^{*}\left(W_{1}, Q_{1}\right), \delta^{*}\left(W_{2}, Q_{1}\right), \delta^{*}\left(W_{1}, Q_{2}\right), \delta^{*}\left(W_{2}, Q_{2}\right)\right\}
\end{gathered}
$$

Recursive Algorithm for (W, Q)

1. If $|W|$ or $|Q|$ is a constant, compute $\delta(W, Q)$ and return a pair $(\xi, \eta) \in$ $W \times Q$ with $\delta(\xi, \eta)=\delta(W, Q)$
2. Parition W into W_{1} and W_{2} and Q into Q_{1} and Q_{2} such that $\left|W_{1}\right|=\left|W_{2}\right|$ and $\left|Q_{1}\right|=\left|Q_{2}\right|$.
3. Let (ξ, η) be (\emptyset, \emptyset) and let κ be ∞
4. For $1 \leq i \leq 2$ and $1 \leq j \leq 2$
5. If $\delta^{*}\left(W_{i}, Q_{j}\right)>\kappa$ (Apply the decision algorithm)
6. let κ be $\delta\left(W_{i}, Q_{j}\right)$ (Apply this recursive algorithm)
7. let (ξ, η) be a pair satisfying $\delta\left(W_{i}, Q_{j}\right)$
8. return (ξ, η)

Apply the recursive algorithm on (V, P) will compute $\delta(P)$ in $O(n \log n)$ expected time

Reference: P. K. Agarwal, R. Klein, C. Knauer, S. Langerman, P. Morin, M. Sharir, and M. Soss. Computing the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D and 3D.

