Randomized Algorithm for the Detour of a Polygonal Chain

A polygonal chain C

The detour $\delta_C(p,q)$ of C on the pair (p,q):

$$\delta_C(p,q) = \frac{|C_p^q|}{|pq|},$$

where C_p^q is the simple path from p to q in C.

The detour δ_C of C

$$\delta_C = \max_{p,q \in C} \delta_C(p,q).$$

For simplicity, we use $\delta(p,q)$ to represent $\delta_C(p,q)$

General Idea

- Target is to find the maximal detour pair $(p,q) \in V \times C$ instead of $C \times C$, where V is the set of polygonal vertices of C
- Orient C from p_0 to p_{n-1} .
- Develop a decision algorithm that for a given parameter $\kappa \geq 1$, determines whether for all pairs $(p,q) \in V \times C$, so that p lies before q, the inequality $\delta(p,q) \leq \kappa$ holds. (By reversing the orientation of C and repeating the same algorithm once more, we can also determine the case in which p lies after q.)
- Apply Chan's randomized technique to turn the decision algorithm into an optimization one.

For a point $p \in C$, we define the *weight* w(p) of p

$$w(p) = \frac{|C_{p_0}^p|}{\kappa}$$

Trick:

$$\begin{split} \delta(p,q) &\leq \kappa \\ \leftrightarrow \frac{|C_p^q|}{|pq|} = \frac{|C_{p_0}^q| - |C_{p_0}^p|}{|pq|} \leq \kappa \\ \leftrightarrow \frac{|C_{p_0}^q|}{\kappa} &\leq |pq| + \frac{|C_{p_0}^p|}{\kappa} \\ \leftrightarrow w(q) &\leq |pq| + w(p) \end{split}$$

Lead to a geometric interpretation

Geometric Interpretation:

- Let K denote the cone $z = \sqrt{x^2 + y^2}$ in \mathbb{E}^3 .
- Map each point $p = (x_p, y_p) \in V$ to the cone $K_p = K + (x_p, y_p, w(p))$
- Also regard K_p as the graph of a bivariable function such that for any point $q \in \mathbb{E}^2$, $K_p(q) = |pq| + w(p)$. In other words, $K_p(q)$ is the distance between q and its vertical projection on K_p . Sometimes, $K_p(q)$ also means the vertical projection point from q onto K_p .
- Let $\mathfrak{K} = \{K_p \mid p \in V\}$
- Map all points $q = (x_q, y_q) \in C$ to the point $\hat{q} = (x_q, y_q, w(q))$ in \mathbb{E}^3 .
- For any subchain π of C, we define $\hat{\pi} = \{\hat{q} \mid q \in \pi\}$

Lemm 1

For any point $q \in C$ and a vertex $p \in V$ that lies before q on C,

 $\delta(p,q) \le \kappa$

if and only if \hat{q} lies below the cone K_p

proof

$$\begin{split} \delta(p,q) &\leq \kappa \Leftrightarrow w(q) \leq w(p) + |pq| \\ &\Leftrightarrow \hat{q} \text{ is below } K_p \end{split}$$

Lemma 1 implies:

 $\delta(\{q\}, V_q) \leq \kappa$, where V_q denotes the set of all vertices $p \in V$ that precedes q along C, if and only if \hat{q} lies on or below each of the cones in \mathcal{K} , i.e., if and only if \hat{q} lies on or below the lower envelope of \mathcal{K}

• Since the cones K_p are erected on the chain \hat{C} , the point \hat{q} , for any $q \in C$, always lies below all the cones erected on vertices appearing after q on P.

Fact

 $\delta_C \leq \kappa$ if and only if \hat{C} lies below the lower evenlope of \mathcal{K} .

Additively Weighted Voronoi diagram:

Given a set S of n sites with weights w(p) for $\forall p \in S$, the additively weighted Voronoi diagram $\operatorname{Vor}_w(S)$ partitions the plane into Voronoi regions $\operatorname{Vor}_w(p, S)$ such that all points in $\operatorname{Vor}_w(p, S)$ share the same nearest site in S under the weighted distance.

- For a point $x \in \mathbb{R}^2$ and a site $p \in S$, the weighted distance $d_w(x,p)$ is d(x,p) + w(p)
- $\operatorname{Vor}_w(V)$ is the projection of the lower evenlope of \mathcal{K} onto the *xy*-plane.
- $O(n \log n)$ construction time

Fact

A point $q \in C$ lies in $\operatorname{Vor}_w(p, V)$ if and only if $K_p(q) = \min_{p' \in V} K_{p'}(q)$

Partition C into a family E of maximal connected subchains so that each subchain lies within a single Voronoi region of $\operatorname{Vor}_w(V)$.

- If $\operatorname{Vor}_w(p, V)$ is non-empty, p lies in $\operatorname{Vor}_w(p, V)$.
- Every subchain in E either is a segment or consists of two segment incidents to $p \in V$.
- For each segment $e \in E$, if e lies in $\operatorname{Vor}_w(p, V)$, it takes O(1) to decide whether \hat{e} lies fully below K_p
- Since |E| is quadratic in the worst case, this method still takes $O(n^2)$ time

Fact (a review)

The maximum dilation can be attained by a co-visiale vertex-edge cut.

- Let \mathfrak{A} be the arrangement formed by C and $\operatorname{Vor}_w(V)$
- For each $p \in V$, let f_p be the face in \mathfrak{A} containing p.
- For each $p \in V$, let E_p be the edges in \mathfrak{A} surrounding f_p

Lemma \hat{C} lies below the lower evenlope of \mathcal{K} if and only if $\bigcup_{e \in E_p, p \in V} \hat{e}$ lies below the lower evenlope of \mathcal{K}

An $O(n \log n)$ -time decision algorithm to decide whether $\delta_C \leq \kappa$

- 1. Compute $\operatorname{Vor}_w(V)$ in $O(n \log n)$ time.
- 2. Compute E_p for $\forall p \in V$ in $O(n \log n)$ time. (L. J. Guibas, M. Sharir, S. Sifrony. On the general motion planning problem with two degress of freedom. Discrete Computational Geometry, vol 4., pp. 491–521, 1989.
- 3. For each vertex $p \in V$ and each edge $e \in E_p$, we determine whether \hat{e} lies below C_p in O(1)
- 4. Reverse the orientation of C and repeat step 1–3 once.

In order to apply Chan's randomized technique, we need to partition a problem instance.

- Let W be a subset of V, let Q be a subchain of C, and let m be |W| + |Q|
- Let $\delta(W, Q)$ be $\min_{p \in W, q \in Q} \delta(p, q)$. (Remember $\delta_C = \delta(V, C)$)
- However, the maximum dilation pair (p,q) for $\delta(W,Q)$ is not necessarily a co-visible pair.
- Let $\delta^*(W, Q)$ be $\sup_{(p,q) \in W \times Q, \overline{pq} \cap Q = \emptyset} \delta(p, q)$.
- $\bullet\; \delta^*(p,q) \leq \delta(p,q)$ and If $\delta(W,Q) = \delta(P),\; \delta^*(W,Q) = \delta(W,Q)$
- it takes O(m) time to determine if $\delta^*(W, Q) \leq t$.

Compute a pair $(\xi, \eta) \in W \times Q$ such that $\delta^*(W, Q) \leq \delta(\xi, \eta) \leq \delta(W, Q)$

• If
$$\delta(C) = \delta(W, Q), \, \delta(\xi, \eta) = \delta(C)$$

- If |W| or |Q| is a constant, we can compute $\delta(W, Q)$ in constant time and select a pair (ξ, η) .
- Otherwies, we parition W into W_1 and W_2 of roughly equal size and Q into Q_1 and Q_2 of roughly equal size

$$\delta(W,Q) = \max\{\delta(W_1,Q_1), \delta(W_2,Q_1), \delta(W_1,Q_2), \delta(W_2,Q_2)\}$$

$$\delta^*(W,Q) = \max\{\delta^*(W_1,Q_1), \delta^*(W_2,Q_1), \delta^*(W_1,Q_2), \delta^*(W_2,Q_2)\}$$

Recursive Algorithm for (W, Q)

- 1. If |W| or |Q| is a constant, compute $\delta(W, Q)$ and return a pair $(\xi, \eta) \in W \times Q$ with $\delta(\xi, \eta) = \delta(W, Q)$
- 2. Parition W into W_1 and W_2 and Q into Q_1 and Q_2 such that $|W_1| = |W_2|$ and $|Q_1| = |Q_2|$.
- 3. Let (ξ, η) be (\emptyset, \emptyset) and let κ be ∞

4. For
$$1 \le i \le 2$$
 and $1 \le j \le 2$

5. If $\delta^*(W_i, Q_j) > \kappa$ (Apply the decision algorithm)

- 6. let κ be $\delta(W_i, Q_j)$ (Apply this recursive algorithm)
- 7. let (ξ, η) be a pair satisfying $\delta(W_i, Q_j)$

8. return (ξ, η)

Apply the recursive algorithm on (V, P) will compute $\delta(P)$ in $O(n \log n)$ expected time

Reference: P. K. Agarwal, R. Klein, C. Knauer, S. Langerman, P. Morin, M. Sharir, and M. Soss. Computing the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D and 3D.