Discrete and Computational Geometry, WS1415 Exercise Sheet " 5 ": Dynamic Settings and Chan's Randomized Technique
 University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Tuesday 18th of November 14:00 pm. There will be a letterbox in the LBH building.
- You may work in groups of at most two participants.
- Please contact Hilko Delonge, hilko.delonge@uni-bonn.de, if you want to participate and have not yet signed up for one of the exercise groups.
- If you are not yet subscribed to the mailing list, please do so at https://lists.iai.uni-bonn.de/mailman/listinfo.cgi/lc-dcgeom

Exercise 13: Dynamic Setting for Trapezoidal Decomposition (4 Points)

Consider a set N of n segments, let π be a random permutation $\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ of N, and let $H(\pi)$ be the history graph with respect to π, i.e., the set of trapezoids created during the incremental construction following π. Assume we swap the orders of S_{i} and S_{i+1} to get a new permutation $\pi^{\prime}=\left(S_{1}, \ldots, S_{i-1}\right.$, $\left.S_{i+1}, S_{i}, S_{i+2}, \ldots S_{n}\right)$, and let $H\left(\pi^{\prime}\right)$ be the history graph with respect to π^{\prime}.

1. Please describe the difference between $H(\pi)$ and $H\left(\pi^{\prime}\right)$
2. Please analyse $\left|H(\pi) \oplus H\left(\pi^{\prime}\right)\right| .(A \oplus B$ means $A \backslash B \cup B \backslash A)$.

Exercise 14: Random-Min
(4 Points)
The following algorithm selects the minimum of r numbers, $A[1], A[2], \ldots, A[r]$. Algorithm RAND-MIN

1. randomly pick a permutation $\left\langle i_{1}, \ldots, i_{r}\right\rangle$ of $\langle 1, \ldots, r\rangle$
2. $t \leftarrow \infty$
3. for $k=1, \ldots, r$ do
4. if $A\left[i_{k}\right]<t$ then (decision)
5. $\quad t \leftarrow A\left[i_{k}\right] \quad$ (evaluation)
6. return t

Please derive the expected number of times that step 5 will be performed.

Exercise 15: Chan's Randomized Technique

(4 Points)
Consider a function $T(\cdot)$ satisfying the following recurrence:

$$
T(n)=(\ln r+1) T(\lceil\alpha n\rceil)+O(D(n))
$$

where $r, \alpha<1$, and $\epsilon>0$ are constants and $D(n)$ is a function such that $D(n) / n^{\epsilon}$ is monotone increasing in n. Please prove that if $(\ln r+1) \alpha^{\epsilon}<1$, $T(n) \leq C \cdot D(n)$, where C is a constant depending on r, α, and ϵ.

