
Introduction
Analysis

Smoothed Analysis of the
Successive Shortest Path Algorithm

Tobias Brunsch1 Kamiel Cornelissen2

Bodo Manthey2 Heiko Röglin1 Clemens Rösner1

1Department of Computer Science
University of Bonn, Germany

2Department of Applied Mathematics
University of Twente, The Netherlands

1 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Minimum-Cost Flow Network

flow network: G = (V ,E)
balance values: b : V → Z
costs: c : E → R≥0

capacities: u : E → N

2

1

-1

-2

0

0

3/2 3/1

1/2 3/1

1/3

3/1 1/2

cost/capacity
2 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Minimum-Cost Flow Problem

2

1

-1

-2

0

0

3/2 3/1

1/2 3/1

1/3

3/1 1/2

1

1

2

1

1

1

flow: f : E → R≥0

capacity constraints: ∀e ∈ E : f (e) ≤ u(e)
Kirchhoff’s law: ∀v ∈ V : b(v) = out(v)− in(v)

Goal: minflow f
∑

e∈E f (e) · c(e)

3 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Minimum-Cost Flow Problem

2

1

-1

-2

0

0

3/2 3/1

1/2 3/1

1/3

3/1 1/2

1

1

2

1

1

1

flow: f : E → R≥0

capacity constraints: ∀e ∈ E : f (e) ≤ u(e)
Kirchhoff’s law: ∀v ∈ V : b(v) = out(v)− in(v)

Goal: minflow f
∑

e∈E f (e) · c(e)

3 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Minimum-Cost Flow Problem

2

1

-1

-2

0

0

3/2 3/1

1/2 3/1

1/3

3/1 1/2

2

1

21

1

flow: f : E → R≥0

capacity constraints: ∀e ∈ E : f (e) ≤ u(e)
Kirchhoff’s law: ∀v ∈ V : b(v) = out(v)− in(v)

Goal: minflow f
∑

e∈E f (e) · c(e)

3 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Short History

Pseudo-Polynomial Algorithms:

Out-of-Kilter algorithm [Minty 60, Fulkerson 61]
Cycle Canceling algorithm
Successive Shortest Path algorithm

Polynomial Time Algorithms:

Capacity Scaling algorithm [Edmonds and Karp 72]
Cost Scaling algorithm

Strongly Polynomial Algorithms:

Tardos’ algorithm [Tardos 85]
Minimum-Mean Cycle Canceling algorithm
Network Simplex algorithm
Enhanced Capacity Scaling algorithm [Orlin 93]

4 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Short History

Pseudo-Polynomial Algorithms:

Out-of-Kilter algorithm [Minty 60, Fulkerson 61]
Cycle Canceling algorithm
Successive Shortest Path algorithm

Polynomial Time Algorithms:

Capacity Scaling algorithm [Edmonds and Karp 72]
Cost Scaling algorithm

Strongly Polynomial Algorithms:

Tardos’ algorithm [Tardos 85]
Minimum-Mean Cycle Canceling algorithm
Network Simplex algorithm
Enhanced Capacity Scaling algorithm [Orlin 93]

4 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Short History

Pseudo-Polynomial Algorithms:

Out-of-Kilter algorithm [Minty 60, Fulkerson 61]
Cycle Canceling algorithm
Successive Shortest Path algorithm

Polynomial Time Algorithms:

Capacity Scaling algorithm [Edmonds and Karp 72]
Cost Scaling algorithm

Strongly Polynomial Algorithms:

Tardos’ algorithm [Tardos 85]
Minimum-Mean Cycle Canceling algorithm
Network Simplex algorithm
Enhanced Capacity Scaling algorithm [Orlin 93]

4 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Theory vs. Practice

Theory Practice

Fastest algorithm:
Enhanced Capacity Scaling

Fastest algorithm:
Network Simplex

Successive Shortest Path:
exponential in worst case

Minimum-Mean Cycle Canceling:
strongly polynomial

Successive Shortest Path

much faster than

Minimum-Mean Cycle Canceling

5 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Theory vs. Practice

Theory Practice

Fastest algorithm:
Enhanced Capacity Scaling

Fastest algorithm:
Network Simplex

Successive Shortest Path:
exponential in worst case

Minimum-Mean Cycle Canceling:
strongly polynomial

Successive Shortest Path

much faster than

Minimum-Mean Cycle Canceling

5 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Reason for Gap between Theory and Practice

Worst-case complexity is too pessimistic!

There are artificial worst-case inputs. These
inputs, however, do not occur in practice.

This phenomenon occurs also for many other
problems and algorithms.

Adversary

“I will
trick your
algo-
rithm!”

Goal

Find a more realistic performance measure that is not just based
on the worst case.

6 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Reason for Gap between Theory and Practice

Worst-case complexity is too pessimistic!

There are artificial worst-case inputs. These
inputs, however, do not occur in practice.

This phenomenon occurs also for many other
problems and algorithms.

Adversary

“I will
trick your
algo-
rithm!”

Goal

Find a more realistic performance measure that is not just based
on the worst case.

6 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Reason for Gap between Theory and Practice

Worst-case complexity is too pessimistic!

There are artificial worst-case inputs. These
inputs, however, do not occur in practice.

This phenomenon occurs also for many other
problems and algorithms.

Adversary

“I will
trick your
algo-
rithm!”

Goal

Find a more realistic performance measure that is not just based
on the worst case.

6 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Smoothed Analysis

Observation: In worst-case analysis, the adversary is too powerful.
Idea: Let’s weaken him!

Input model:

Adversarial choice of flow network

Adversarial real arc capacities ue and node balance values bv

Adversarial densities fe : [0, 1]→ [0, φ]

Arc costs ce independently drawn according to fe

Randomness models, e.g., measurement errors, numerical
imprecision, rounding, . . .

7 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Smoothed Analysis

Observation: In worst-case analysis, the adversary is too powerful.
Idea: Let’s weaken him!

Input model:

Adversarial choice of flow network

Adversarial real arc capacities ue and node balance values bv

Adversarial densities fe : [0, 1]→ [0, φ]

Arc costs ce independently drawn according to fe

Randomness models, e.g., measurement errors, numerical
imprecision, rounding, . . .

7 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Smoothed Analysis

Worst-case Analysis: maxce T

Smoothed Analysis: maxfe E [T]

φ = 1: Average-case analysis

0 1

1
x

f (x)

8 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Smoothed Analysis

Worst-case Analysis: maxce T

Smoothed Analysis: maxfe E [T]

φ = 1: Average-case analysis

0 1

1
x

f (x)

8 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Smoothed Analysis

Worst-case Analysis: maxce T

Smoothed Analysis: maxfe E [T]

φ→∞: Worst-case analysis

0 1
x

f (x)

φ

1/φ

8 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Smoothed Analysis

Worst-case Analysis: maxce T

Smoothed Analysis: maxfe E [T]

φ→∞: Worst-case analysis

0 1
x

f (x)

φ

x?

8 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Smoothed Analysis

Worst-case Analysis: maxce T

Smoothed Analysis: maxfe E [T]

φ→∞: Worst-case analysis

0 1
x

f (x)

x?

φ

8 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Initial Transformation

Successive Shortest Path algorithm

2

1

-1

-2

0

0

3/2 3/1

1/2 3/1

1/3

3/1 1/2

cost/capacity

9 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Initial Transformation

Successive Shortest Path algorithm

0

0

3/2 3/1

1/2 3/1

1/3

3/1 1/2

0

0

0

0

3 -3

0/2

0/20/1

0/1

cost/capacity

9 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Augmenting Steps

Successive Shortest Path algorithm

0

0

3/2 3/1

1/2 3/1

1/3

3/1 1/2

0

0

0

0

3 -3

0/2

0/20/1

0/1
2

2

2

2

2

path length: 3, augmenting flow value: 2

10 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Augmenting Steps

Successive Shortest Path algorithm

0

0

3/2 3/1

3/1

3/1

0

0

0

0
0/1

0/10/2

0/2

-1/2

-1/2

1 -1
-1/21/1

update residual network

10 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Augmenting Steps

Successive Shortest Path algorithm

0

0

3/2 3/1

3/1

3/1

0

0

0

0
0/1

0/10/2

0/2

-1/2

-1/2

1 -1
-1/21/1

1

1

1

1

1

path length: 5, augmenting flow value: 1

10 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Augmenting Steps

Successive Shortest Path algorithm

0

0

3/2 3/1

0

0

0

0

0/2

0/2

-1/2

-1/2

-3/1

-3/1

0/1

0/1

0 0
-1/11/2

update residual network

10 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Resulting Flow

Successive Shortest Path algorithm

0

0

3/2 3/1

1/2 3/1

1/3

3/1 1/2

0

0

0

0

3 -3

0/2

0/20/1

0/1
2

1

21

1

2

21

1

flow cost: 11, flow value: 3

11 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Resulting Flow

Successive Shortest Path algorithm

2

1

-1

-2

0

0

3/2 3/1

1/2 3/1

1/3

3/1 1/2

2

1

21

1

flow cost: 11, flow value: 3

11 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Results

Theorem (Upper Bound)

In expectation, the SSP algorithm requires O(mnφ) iterations and
has a running time of O(mnφ(m + n log n)).

Theorem (Lower Bound)

There are smoothed instances on which the SSP algorithm requires
Ω(m ·min {n, φ} · φ) iterations in expectation.

upper bound tight for φ = Ω(n)

12 / 17

Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Results

Theorem (Upper Bound)

In expectation, the SSP algorithm requires O(mnφ) iterations and
has a running time of O(mnφ(m + n log n)).

Theorem (Lower Bound)

There are smoothed instances on which the SSP algorithm requires
Ω(m ·min {n, φ} · φ) iterations in expectation.

upper bound tight for φ = Ω(n)

12 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Useful Properties

Lemma

The distances from the source to any node increase monotonically.

0
value

cost

initial solution: empty flow

Lemma

Every intermediate flow is optimal for its flow value.

13 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Useful Properties

Lemma

The distances from the source to any node increase monotonically.

0
value

cost

value
length

slope = path length

×
value

after 1 iteration

Lemma

Every intermediate flow is optimal for its flow value.

13 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Useful Properties

Lemma

The distances from the source to any node increase monotonically.

0
value

cost

after 2 iterations

Lemma

Every intermediate flow is optimal for its flow value.

13 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Useful Properties

Lemma

The distances from the source to any node increase monotonically.

0
value

cost

after 3 iterations

Lemma

Every intermediate flow is optimal for its flow value.

13 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Useful Properties

Lemma

The distances from the source to any node increase monotonically.

0
value

cost

after 4 iterations

Lemma

Every intermediate flow is optimal for its flow value.

13 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Useful Properties

Lemma

The distances from the source to any node increase monotonically.

0
value

cost

after 5 iterations
#iterations = #distinct slopes

Lemma

Every intermediate flow is optimal for its flow value.

13 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Useful Properties

Lemma

The distances from the source to any node increase monotonically.

0
value

cost

after 5 iterations
#iterations = #distinct slopes

Lemma

Every intermediate flow is optimal for its flow value.

13 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Counting the Number of Slopes

slope = augmenting path length ∈ (0, n]

=
k⋃

`=1

I`, |I`| = n
k

0 n

=⇒ E[#slopes] =
k∑̀
=1

E[#slopes ∈ I`]

≈
k∑̀
=1

Pr [∃slope ∈ I`]

= O(mnφ)

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

14 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Counting the Number of Slopes

slope = augmenting path length ∈ (0, n] =
k⋃

`=1

I`, |I`| = n
k

0 n

=⇒ E[#slopes] =
k∑̀
=1

E[#slopes ∈ I`]

≈
k∑̀
=1

Pr [∃slope ∈ I`]

= O(mnφ)

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

14 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Counting the Number of Slopes

slope = augmenting path length ∈ (0, n] =
k⋃

`=1

I`, |I`| = n
k

0 n

=⇒

E[

#slopes

]

=
k∑̀
=1

E[

#slopes ∈ I`

]

≈
k∑̀
=1

Pr [∃slope ∈ I`]

= O(mnφ)

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

14 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Counting the Number of Slopes

slope = augmenting path length ∈ (0, n] =
k⋃

`=1

I`, |I`| = n
k

0 n

=⇒ E[#slopes] =
k∑̀
=1

E[#slopes ∈ I`]

≈
k∑̀
=1

Pr [∃slope ∈ I`]

= O(mnφ)

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

14 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Counting the Number of Slopes

slope = augmenting path length ∈ (0, n] =
k⋃

`=1

I`, |I`| = n
k

0 n

=⇒ E[#slopes] =
k∑̀
=1

E[#slopes ∈ I`]

≈
k∑̀
=1

Pr [∃slope ∈ I`]

= O(mnφ)

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

14 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Counting the Number of Slopes

slope = augmenting path length ∈ (0, n] =
k⋃

`=1

I`, |I`| = n
k

0 n

=⇒ E[#slopes] =
k∑̀
=1

E[#slopes ∈ I`]

≈
k∑̀
=1

Pr [∃slope ∈ I`]

= O(mnφ)

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

14 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Counting the Number of Slopes

slope = augmenting path length ∈ (0, n] =
k⋃

`=1

I`, |I`| = n
k

0 n

=⇒ E[#slopes] =
k∑̀
=1

E[#slopes ∈ I`]

≈
k∑̀
=1

Pr [∃slope ∈ I`]

= O(mnφ)

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

14 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Flow Reconstruction

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

d - slope threshold

F ?- flow at breakpoint

P - next augmenting path

e - empty arc of P in Gf ?

cost

value0

∃slope ∈ (d , d + ε] ⇐⇒ c(P) ∈ (d , d + ε]

Goal: Reconstruct F ? and P without knowing ce

15 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Flow Reconstruction

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

d - slope threshold

F ?- flow at breakpoint

P - next augmenting path

e - empty arc of P in Gf ?

≤ d

≤ d

> d

> d

d

cost

value0

∃slope ∈ (d , d + ε] ⇐⇒ c(P) ∈ (d , d + ε]

Goal: Reconstruct F ? and P without knowing ce

15 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Flow Reconstruction

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

d - slope threshold

F ?- flow at breakpoint

P - next augmenting path

e - empty arc of P in Gf ?

≤ d

≤ d

> d

> d

d

cost

F ?

value0

∃slope ∈ (d , d + ε] ⇐⇒ c(P) ∈ (d , d + ε]

Goal: Reconstruct F ? and P without knowing ce

15 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Flow Reconstruction

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

d - slope threshold

F ?- flow at breakpoint

P - next augmenting path

e - empty arc of P in Gf ? ≤ d

≤ d

> d

> d

d

c(P)

cost

F ?

value0

∃slope ∈ (d , d + ε] ⇐⇒ c(P) ∈ (d , d + ε]

Goal: Reconstruct F ? and P without knowing ce

15 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Flow Reconstruction

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

d - slope threshold

F ?- flow at breakpoint

P - next augmenting path

e - empty arc of P in Gf ? ≤ d

≤ d

> d

> d

d

c(P)

cost

F ?

value0

∃slope ∈ (d , d + ε] ⇐⇒ c(P) ∈ (d , d + ε]

Goal: Reconstruct F ? and P without knowing ce

15 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Flow Reconstruction

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

d - slope threshold

F ?- flow at breakpoint

P - next augmenting path

e - empty arc of P in Gf ? ≤ d

≤ d

> d

> d

d

c(P)

cost

F ?

value0

∃slope ∈ (d , d + ε] ⇐⇒ c(P) ∈ (d , d + ε]

Goal: Reconstruct F ? and P without knowing ce

15 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Principle of Deferred Decisions

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

Phase 1: Reveal all ce′ for e ′ 6= e.
Assume this suffices to uniquely iden-
tify F ? and P.

Phase 2:

Pr [c(P) ∈ (d , d + ε]]

= Pr [c(e) ∈ (z , z + ε]] ≤ φε,

where z is fixed if ce′ for e ′ 6= e is fixed.

≤ d

≤ d

> d

> d

d

c(P)

cost

F ?

value0

16 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Principle of Deferred Decisions

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

Phase 1: Reveal all ce′ for e ′ 6= e.
Assume this suffices to uniquely iden-
tify F ? and P.

Phase 2:

Pr [c(P) ∈ (d , d + ε]]

= Pr [c(e) ∈ (z , z + ε]] ≤ φε,

where z is fixed if ce′ for e ′ 6= e is fixed.

≤ d

≤ d

> d

> d

d

c(P)

cost

F ?

value0

16 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Flow Reconstruction

Case 1: e forward arc
Set c ′(e) = 1 and for all e ′ 6= e set c ′(e ′) = c(e ′).
Run SSP with modified costs c ′.

F ? is the same for c and c ′

17 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Flow Reconstruction

Case 1: e forward arc
Set c ′(e) = 1 and for all e ′ 6= e set c ′(e ′) = c(e ′).
Run SSP with modified costs c ′.

≤ d

≤ d

> d

> d

d

c(P)

cost

F ?

value0

F ? is the same for c and c ′

17 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Flow Reconstruction

Case 1: e forward arc
Set c ′(e) = 1 and for all e ′ 6= e set c ′(e ′) = c(e ′).
Run SSP with modified costs c ′.

≤ d

≤ d

> d

> d

d

cost

F ?

value0

c′

c

F ? is the same for c and c ′

17 / 17

Introduction
Analysis

Observations
Discretization
Flow Reconstruction

Flow Reconstruction

Case 1: e forward arc
Set c ′(e) = 1 and for all e ′ 6= e set c ′(e ′) = c(e ′).
Run SSP with modified costs c ′.

≤ d

≤ d

> d

> d

d

cost

F ?

value0

c′

c

F ? is the same for c and c ′
17 / 17

	Introduction
	Minimum-Cost Flow Problem
	Smoothed Analysis
	Successive Shortest Path Algorithm

	Analysis
	Observations
	Discretization
	Flow Reconstruction

