Smoothed Analysis of the Successive Shortest Path Algorithm

Tobias Brunsch¹ Kamiel Cornelissen² Bodo Manthey² Heiko Röglin¹ Clemens Rösner¹

¹Department of Computer Science University of Bonn, Germany

²Department of Applied Mathematics University of Twente, The Netherlands

Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Minimum-Cost Flow Network

flow network: balance values: costs: capacities:

$$G = (V, E)$$

$$b: V \to \mathbb{Z}$$

$$c: E \to \mathbb{R}_{\geq 0}$$

$$u: E \to \mathbb{N}$$

cost/capacity

Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Minimum-Cost Flow Problem

flow: capacity constraints: Kirchhoff's law: $f: E \to \mathbb{R}_{\geq 0}$ $\forall e \in E : f(e) \leq u(e)$ $\forall v \in V : b(v) = \operatorname{out}(v) - \operatorname{in}(v)$

Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Minimum-Cost Flow Problem

 $\begin{array}{ll} \text{flow:} & f: E \to \mathbb{R}_{\geq 0} \\ \text{capacity constraints:} & \forall e \in E : f(e) \leq u(e) \\ \text{Kirchhoff's law:} & \forall v \in V : b(v) = \operatorname{out}(v) - \operatorname{in}(v) \end{array}$

Goal:
$$\min_{\text{flow } f} \sum_{e \in E} f(e) \cdot c(e)$$

Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Minimum-Cost Flow Problem

 $\begin{array}{ll} \text{flow:} & f: E \to \mathbb{R}_{\geq 0} \\ \text{capacity constraints:} & \forall e \in E : f(e) \leq u(e) \\ \text{Kirchhoff's law:} & \forall v \in V : b(v) = \operatorname{out}(v) - \operatorname{in}(v) \end{array}$

Goal:
$$\min_{\text{flow } f} \sum_{e \in E} f(e) \cdot c(e)$$

Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Short History

Pseudo-Polynomial Algorithms:

Out-of-Kilter algorithm Cycle Canceling algorithm Successive Shortest Path algorithm [Minty 60, Fulkerson 61]

Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Short History

Pseudo-Polynomial Algorithms:

Out-of-Kilter algorithm Cycle Canceling algorithm Successive Shortest Path algorithm

Polynomial Time Algorithms:

Capacity Scaling algorithm Cost Scaling algorithm [Minty 60, Fulkerson 61]

[Edmonds and Karp 72]

Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Short History

Pseudo-Polynomial Algorithms:

Out-of-Kilter algorithm Cycle Canceling algorithm Successive Shortest Path algorithm

Polynomial Time Algorithms:

Capacity Scaling algorithm Cost Scaling algorithm

Strongly Polynomial Algorithms:

Tardos' algorithm Minimum-Mean Cycle Canceling algorithm Network Simplex algorithm Enhanced Capacity Scaling algorithm

[Minty 60, Fulkerson 61]

[Edmonds and Karp 72]

[Tardos 85]

[Orlin 93]

Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Theory vs. Practice

Theory

Practice

Fastest algorithm: Enhanced Capacity Scaling Fastest algorithm: Network Simplex

Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Theory vs. Practice

Theory

Fastest algorithm: Enhanced Capacity Scaling

Successive Shortest Path: exponential in worst case

Minimum-Mean Cycle Canceling: strongly polynomial

Practice

Fastest algorithm: Network Simplex

Successive Shortest Path much faster than Minimum-Mean Cycle Canceling

Reason for Gap between Theory and Practice

- Worst-case complexity is too pessimistic!
- There are artificial worst-case inputs. These inputs, however, do not occur in practice.

"I will trick your algorithm!"

Reason for Gap between Theory and Practice

- Worst-case complexity is too pessimistic!
- There are artificial worst-case inputs. These inputs, however, do not occur in practice.
- This phenomenon occurs also for many other problems and algorithms.

"I will trick your algorithm!"

Reason for Gap between Theory and Practice

- Worst-case complexity is too pessimistic!
- There are artificial worst-case inputs. These inputs, however, do not occur in practice.
- This phenomenon occurs also for many other problems and algorithms.

"I will trick your algorithm!"

Goal

Find a more realistic performance measure that is not just based on the worst case.

Smoothed Analysis

Observation: In worst-case analysis, the adversary is too powerful. **Idea:** Let's weaken him!

Input model:

- Adversarial choice of flow network
- Adversarial real arc capacities u_e and node balance values b_v
- Adversarial densities $f_e \colon [0,1] \to [0,\phi]$
- Arc costs c_e independently drawn according to f_e

Smoothed Analysis

Observation: In worst-case analysis, the adversary is too powerful. **Idea:** Let's weaken him!

Input model:

- Adversarial choice of flow network
- Adversarial real arc capacities u_e and node balance values b_v
- Adversarial densities $f_e \colon [0,1] \to [0,\phi]$
- Arc costs c_e independently drawn according to f_e

Randomness models, e.g., measurement errors, numerical imprecision, rounding, ...

Introduction Analysis Successive Shortest Path Algorith

Smoothed Analysis

Worst-case Analysis: $\max_{c_e} T$

Smoothed Analysis: $\max_{f_e} \mathbf{E}[T]$

Introduction Analysis Successive Shortest Path Algorith

Smoothed Analysis

Worst-case Analysis: $\max_{c_e} T$

Smoothed Analysis: $\max_{f_e} \mathbf{E}[T]$

Introduction Analysis Successive Shortest Path Algorith

Smoothed Analysis

Worst-case Analysis: $\max_{c_e} T$

Smoothed Analysis: r

 $\max_{f_e} \mathbf{E}[T]$

Introduction Analysis Successive Shortest Path Algorith

Smoothed Analysis

Worst-case Analysis: $\max_{c_e} T$

Smoothed Analysis: $\max_{f_e} \mathbf{E}[T]$

Introduction Analysis Successive Shortest Path Algorith

Smoothed Analysis

Worst-case Analysis: $\max_{c_e} T$

Smoothed Analysis: $\max_{f_e} \mathbf{E}[T]$

Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Initial Transformation

Successive Shortest Path algorithm

Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Initial Transformation

Successive Shortest Path algorithm

Introduction Analysis Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Augmenting Steps

Successive Shortest Path algorithm

path length: 3, augmenting flow value: 2

Introduction Analysis Successive Shortest Path Algorithm

Augmenting Steps

Successive Shortest Path algorithm

update residual network

Introduction Analysis Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Augmenting Steps

Successive Shortest Path algorithm

path length: 5, augmenting flow value: 1

Introduction Analysis Successive Shortest Path Algorithm

Augmenting Steps

Successive Shortest Path algorithm

update residual network

Introduction Analysis Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Resulting Flow

Successive Shortest Path algorithm

flow cost: 11, flow value: 3

Introduction Analysis Minimum-Cost Flow Problem Smoothed Analysis Successive Shortest Path Algorithm

Resulting Flow

Successive Shortest Path algorithm

flow cost: 11, flow value: 3

Results

Theorem (Upper Bound)

In expectation, the SSP algorithm requires $O(mn\phi)$ iterations and has a running time of $O(mn\phi(m + n \log n))$.

Results

Theorem (Upper Bound)

In expectation, the SSP algorithm requires $O(mn\phi)$ iterations and has a running time of $O(mn\phi(m + n \log n))$.

Theorem (Lower Bound)

There are smoothed instances on which the SSP algorithm requires $\Omega(m \cdot \min\{n, \phi\} \cdot \phi)$ iterations in expectation.

upper bound tight for $\phi = \Omega(n)$

Observations Discretization Flow Reconstruction

Useful Properties

Lemma

Observations Discretization Flow Reconstruction

Useful Properties

Lemma

Observations Discretization Flow Reconstruction

Useful Properties

Lemma

Observations Discretization Flow Reconstruction

Useful Properties

Lemma

Observations Discretization Flow Reconstruction

Useful Properties

Lemma

Observations Discretization Flow Reconstruction

Useful Properties

Lemma

Observations Discretization Flow Reconstruction

Useful Properties

Lemma

The distances from the source to any node increase monotonically.

Lemma

Every intermediate flow is optimal for its flow value.

Counting the Number of Slopes

slope = augmenting path length $\in (0, n]$ $\begin{vmatrix} & & & \\ & & & \\ & & & \\ 0 & & & \\ & & & & \\ & & & \\ & & & & \\$

slope = augmenting path length
$$\in (0, n] = \bigcup_{\ell=1}^{k} I_{\ell}, \quad |I_{\ell}| = \frac{n}{k}$$

$$\bigcup_{l=1}^{k} I_{\ell}, \quad |I_{\ell}| = \frac{n}{k}$$

slope = augmenting path length
$$\in (0, n] = \bigcup_{\ell=1}^{k} I_{\ell}, \quad |I_{\ell}| = \frac{n}{k}$$

$$\bigcup_{\ell=1}^{k} I_{\ell}, \quad |I_{\ell}| = \frac{n}{k}$$

$$\implies$$
 #slopes $=\sum_{\ell=1}^{\hat{}}$ #slopes $\in I_{\ell}$

slope = augmenting path length
$$\in (0, n] = \bigcup_{\ell=1}^{k} I_{\ell}, \quad |I_{\ell}| = \frac{n}{k}$$

$$0 \qquad n$$

$$\implies$$
 E[#slopes] = $\sum_{\ell=1}^{k}$ **E**[#slopes $\in I_{\ell}$]

slope = augmenting path length
$$\in (0, n] = \bigcup_{\ell=1}^{k} I_{\ell}, \quad |I_{\ell}| = \frac{n}{k}$$

$$\bigcup_{l=1}^{k} I_{\ell}, \quad |I_{\ell}| = \frac{n}{k}$$

$$\implies$$
 E[#slopes] = $\sum_{\ell=1}^{k}$ **E**[#slopes $\in I_{\ell}$]

$$\approx \sum_{\ell=1}^{k} \mathsf{Pr}[\exists \mathsf{slope} \in I_{\ell}]$$

Introduction Analysis Observat Discretiz Flow Rec

Discretization Flow Reconstruction

Counting the Number of Slopes

slope = augmenting path length
$$\in (0, n] = \bigcup_{\ell=1}^{k} I_{\ell}, \quad |I_{\ell}| = \frac{n}{k}$$

$$\bigcup_{l=1}^{k} I_{\ell}, \quad |I_{\ell}| = \frac{n}{k}$$

$$\implies$$
 E[#slopes] = $\sum_{\ell=1}^{k}$ **E**[#slopes $\in I_{\ell}$]

$$pprox \sum_{\ell=1}^k \mathsf{Pr}[\exists \mathsf{slope} \in I_\ell]$$

Main Lemma

$$\forall d \geq 0 : \forall \varepsilon \geq 0 : \mathsf{Pr}[\exists \mathsf{slope} \in (d, d + \varepsilon]] = O(m\phi\varepsilon)$$

Counting the Number of Slopes

slope = augmenting path length
$$\in (0, n] = \bigcup_{\ell=1}^{k} I_{\ell}, \quad |I_{\ell}| = \frac{n}{k}$$

$$0 \qquad n$$

$$\implies \mathsf{E}[\# \mathsf{slopes}] = \sum_{\ell=1}^k \mathsf{E}[\# \mathsf{slopes} \in I_\ell]$$

$$pprox \sum_{\ell=1}^k \mathsf{Pr}[\exists \mathsf{slope} \in I_\ell]$$

 $= O(mn\phi)$

Main Lemma

 $\forall d \geq 0 : \forall \varepsilon \geq 0 : \mathsf{Pr}[\exists \mathsf{slope} \in (d, d + \varepsilon]] = O(m\phi\varepsilon)$

Observations Discretization Flow Reconstruction

Flow Reconstruction

Main Lemma

$\forall d \geq 0 : \forall \varepsilon \geq 0 : \mathsf{Pr}[\exists \mathsf{slope} \in (d, d + \varepsilon]] = O(m\phi\varepsilon)$

ntroduction D Analysis F

Observations Discretization Flow Reconstruction

Flow Reconstruction

Main Lemma

 $\forall d \geq 0 : \forall \varepsilon \geq 0 : \mathsf{Pr}[\exists \mathsf{slope} \in (d, d + \varepsilon]] = O(m\phi\varepsilon)$

d - slope threshold

ntroduction Dis Analysis Ele

Discretization Flow Reconstruction

Flow Reconstruction

Main Lemma

 $\forall d \geq 0 : \forall \varepsilon \geq 0 : \mathsf{Pr}[\exists \mathsf{slope} \in (d, d + \varepsilon]] = O(m\phi\varepsilon)$

- d slope threshold
- F^{\star} flow at breakpoint

ntroduction Analysis Flor

Observations Discretization Flow Reconstruction

Flow Reconstruction

Main Lemma

 $\forall d \geq 0 : \forall \varepsilon \geq 0 : \mathsf{Pr}[\exists \mathsf{slope} \in (d, d + \varepsilon]] = O(m\phi\varepsilon)$

- d slope threshold
- F^{\star} flow at breakpoint
- $\ensuremath{\boldsymbol{P}}$ next augmenting path
- e empty arc of P in $G_{f^{\star}}$

Analysis Observation

Discretization Flow Reconstruction

Flow Reconstruction

Main Lemma

 $\forall d \geq 0 : \forall \varepsilon \geq 0 : \mathsf{Pr}[\exists \mathsf{slope} \in (d, d + \varepsilon]] = O(m\phi\varepsilon)$

- d slope threshold
- F^* flow at breakpoint
- P next augmenting path
- e empty arc of P in G_{f^*}

 $\exists \mathsf{slope} \in (d, d + \varepsilon] \iff c(P) \in (d, d + \varepsilon]$

Analysis Observations Discretization Flow Reconstruction

Flow Reconstruction

Main Lemma

 $\forall d \geq 0 : \forall \varepsilon \geq 0 : \mathsf{Pr}[\exists \mathsf{slope} \in (d, d + \varepsilon]] = O(m\phi\varepsilon)$

- d slope threshold
 - F^* flow at breakpoint
 - P next augmenting path
- e empty arc of P in G_{f^*}

 $\exists \text{slope} \in (d, d + \varepsilon] \iff c(P) \in (d, d + \varepsilon]$ Goal: Reconstruct F^* and P without knowing c_e troduction Analysis Construction Flow Reconstruction

Principle of Deferred Decisions

Main Lemma

 $\forall d \geq 0 : \forall \varepsilon \geq 0 : \mathsf{Pr}[\exists \mathsf{slope} \in (d, d + \varepsilon]] = O(m\phi\varepsilon)$

Phase 1: Reveal all $c_{e'}$ for $e' \neq e$. Assume this suffices to uniquely identify F^* and P.

Principle of Deferred Decisions

Main Lemma

$$\forall d \geq 0 : \forall \varepsilon \geq 0 : \mathsf{Pr}[\exists \mathsf{slope} \in (d, d + \varepsilon]] = O(m\phi\varepsilon)$$

Phase 1: Reveal all $c_{e'}$ for $e' \neq e$. Assume this suffices to uniquely identify F^* and P.

Phase 2:

 $\begin{aligned} & \mathbf{Pr}[c(P) \in (d, d + \varepsilon]] \\ &= \mathbf{Pr}[c(e) \in (z, z + \varepsilon]] \leq \phi \varepsilon, \end{aligned}$

where z is fixed if $c_{e'}$ for $e' \neq e$ is fixed.

Analysis Flow Reconstruction

Flow Reconstruction

Case 1: *e* forward arc

Set c'(e) = 1 and for all $e' \neq e$ set c'(e') = c(e'). Run SSP with modified costs c'. Analysis Flow Reconstruction

Flow Reconstruction

Case 1: *e* forward arc Set c'(e) = 1 and for all $e' \neq e$ set c'(e') = c(e'). Run SSP with modified costs c'. $\cos t$ > dc(P) > a $\leq d$ value

Flow Reconstruction

Case 1: *e* forward arc Set c'(e) = 1 and for all $e' \neq e$ set c'(e') = c(e'). Run SSP with modified costs c'. $\cos t$ > $\leq d$ value

Analysis Observations Observations Discretization Flow Reconstruction

Flow Reconstruction

Case 1: *e* forward arc Set c'(e) = 1 and for all $e' \neq e$ set c'(e') = c(e'). Run SSP with modified costs c'.

 F^* is the same for c and c'