Worst Case and Probabilistic Analysis of the 2-Opt Algorithm for the TSP

Matthias Englert Heiko Röglin Berthold Vöcking

Department of Computer Science RWTH Aachen

Oberwolfach 2007

Traveling Salesperson Problem (TSP)

• Input: weighted (complete) graph G = (V, E, d) with $d : E \to \mathbb{R}$.

Traveling Salesperson Problem (TSP)

- Input: weighted (complete) graph G = (V, E, d) with $d : E \to \mathbb{R}$.
- Goal: Find Hamiltonian cycle of minimum length.

Theoretical Results

- General TSP
 - ► Strongly NP-hard.
 - Not approximable within any polynomial factor.

Theoretical Results

- General TSP
 - Strongly NP-hard.
 - Not approximable within any polynomial factor.
- Metric TSP
 - Strongly NP-hard.
 - ► 3/2-approximation [Christofides, (1976)]
 - APX-hard: lower bound of 220/219 [Papadimitriou, Vempala (2000)]

Theoretical Results

$$(x_1, y_1) (x_2, y_2) \stackrel{\bullet}{\bigcirc} \\ \bigcirc \\ d(P_1, P_2) = \\ \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

- General TSP
 - Strongly NP-hard.
 - Not approximable within any polynomial factor.
- Metric TSP
 - Strongly NP-hard.
 - ► 3/2-approximation [Christofides, (1976)]
 - APX-hard: lower bound of 220/219 [Papadimitriou, Vempala (2000)]
- Euclidean TSP
 - Cities $\subset \mathbb{R}^d$
 - Strongly NP-hard (⇒ no FPTAS) [Papadimitriou (1977)]
 - PTAS exists [Arora (1996), Mitchell (1996)].

• Numerous experimental studies.

- ► TSPLIB contains "real-world" and random (Euclidean) instances.
- ► DIMACS Implementation Challenge [Johnson and McGeoch (2002)].

- Numerous experimental studies.
 - ► TSPLIB contains "real-world" and random (Euclidean) instances.
 - DIMACS Implementation Challenge [Johnson and McGeoch (2002)].

Some conclusions:

- Worst-case results are often too pessimistic.
- The PTAS is too slow on large scale instances.
- The most successful algorithms (w.r.t. quality and running time) in practice rely on local search.

• Start with an arbitrary tour.

- Start with an arbitrary tour.
- Remove two edges from the tour.

- Start with an arbitrary tour.
- Remove two edges from the tour.
- Omplete the tour by two other edges.

- Start with an arbitrary tour.
- Remove two edges from the tour.
- Omplete the tour by two other edges.
- Repeat steps 2 and 3 until no local improvement is possible anymore.

Experiments on Random Euclidean Instances

[Johnson and McGeoch (2002)]

Approximation Ratio

- Christofides (for $n \le 10^5$): ≈ 1.1
- 2-Opt (for $n \le 10^6$): ≈ 1.05

Experiments on Random Euclidean Instances

[Johnson and McGeoch (2002)]

Approximation Ratio

- Christofides (for $n \le 10^5$): ≈ 1.1
- 2-Opt (for $n \le 10^6$): ≈ 1.05

Number of Local Improvements of 2-Opt

- Greedy Starts: Probably O(n)
- Random Starts: Probably $O(n \log n)$

	General TSP	Euclidean metric	Manhattan metric
average			
smoothed			
worst-case	$2^{\Omega(n)}$		

Average-case results: [Chandra, Karloff, Tovey (1999)]. Worst-case results: [Lueker (1975)].

	General TSP	Euclidean metric	Manhattan metric
average			
smoothed			
worst-case	$2^{\Omega(n)}$	$2^{\Omega(n)}$	$2^{\Omega(n)}$

Average-case results: [Chandra, Karloff, Tovey (1999)]. Worst-case results: [Lueker (1975)].

Our results.

	General TSP	Euclidean metric	Manhattan metric
average		$ ilde{O}(n^{10})$	$\tilde{O}(n^6)$
smoothed			
worst-case	$2^{\Omega(n)}$	$2^{\Omega(n)}$	$2^{\Omega(n)}$

Average-case results: [Chandra, Karloff, Tovey (1999)]. Worst-case results: [Lueker (1975)].

Our results.

	General TSP	Euclidean metric	Manhattan metric
average	n ^{3+o(1)}	$\tilde{O}(n^{10})$ $\tilde{O}(n^{4.33}) [\tilde{O}(n^{3.83})]$	$\tilde{O}(n^6)$ $\tilde{O}(n^4) [\tilde{O}(n^{3.5})]$
smoothed			
worst-case	$2^{\Omega(n)}$	$2^{\Omega(n)}$	$2^{\Omega(n)}$

Average-case results: [Chandra, Karloff, Tovey (1999)]. Worst-case results: [Lueker (1975)].

Our results.

Introduction

Theorem

For every $n \in \mathbb{N}$, there is a graph in the Euclidean plane with 8n vertices on which 2-Opt can make $2^{n+3} - 14$ steps.

Possible States of a Gadget: (Long,Long), (Long,Short), (Short,Long), (Short,Short)

(Short,Short) = 2

(Short,Short) = 2

Euclidean Embedding of the Gadgets

Theorem

Assume that n points are placed independently, uniformly at random in the unit square $[0,1]^2$. The expected number of 2-Opt steps is bounded by $O(n^{4+1/3} \cdot \log n)$ (for every initial tour and every pivot rule).

Theorem

The expected number of 2-Opt steps is bounded by $O(n^7 \log^2 n)$.

Theorem

The expected number of 2-Opt steps is bounded by $O(n^7 \log^2 n)$.

Proof.

- Consider a 2-Opt step $(e_1, e_2) \rightarrow (e_3, e_4)$.
- $\Delta(e_1, e_2, e_3, e_4) = I(e_1) + I(e_2) I(e_3) I(e_4).$

Theorem

The expected number of 2-Opt steps is bounded by $O(n^7 \log^2 n)$.

Proof.

• Consider a 2-Opt step $(e_1, e_2) \rightarrow (e_3, e_4)$.

•
$$\Delta(e_1, e_2, e_3, e_4) = l(e_1) + l(e_2) - l(e_3) - l(e_4).$$

۲

$$\Delta = \min_{e_1, e_2, e_3, e_4} |\Delta(e_1, e_2, e_3, e_4)|.$$

Theorem

The expected number of 2-Opt steps is bounded by $O(n^7 \log^2 n)$.

Proof.

۲

۵

• Consider a 2-Opt step
$$(e_1, e_2) \rightarrow (e_3, e_4)$$
.

•
$$\Delta(e_1, e_2, e_3, e_4) = I(e_1) + I(e_2) - I(e_3) - I(e_4).$$

$$\Delta = \min_{e_1, e_2, e_3, e_4} |\Delta(e_1, e_2, e_3, e_4)|.$$

2-Opt Steps
$$\leq \frac{\sqrt{2n}}{\Delta}$$
.

Theorem

The expected number of 2-Opt steps is bounded by $O(n^7 \log^2 n)$.

Proof.

۵

• Consider a 2-Opt step $(e_1, e_2) \rightarrow (e_3, e_4)$.

•
$$\Delta(e_1, e_2, e_3, e_4) = l(e_1) + l(e_2) - l(e_3) - l(e_4).$$

$$\Delta = \min_{e_1, e_2, e_3, e_4} |\Delta(e_1, e_2, e_3, e_4)|.$$

2-Opt Steps
$$\leq \frac{\sqrt{2n}}{\Delta}$$
.

Bound Δ by a union bound: There are O(n⁴) different 2-Opt steps, analyze Δ(e₁, e₂, e₃, e₄) for one of them. ⇒ Δ ≈ 1/(n⁴ log n).

• The bound is too pessimistic: Not every step yields the smallest possible improvement $\Delta \approx 1/(n^4 \log n)$.

- The bound is too pessimistic: Not every step yields the smallest possible improvement $\Delta \approx 1/(n^4 \log n)$.
- Consider two consecutive steps: They yield $\Delta + \Delta_2 > 2\Delta$.

- The bound is too pessimistic: Not every step yields the smallest possible improvement $\Delta \approx 1/(n^4 \log n)$.
- Consider two consecutive steps: They yield $\Delta + \Delta_2 > 2\Delta$.
- Consider linked pair: $(e_1, e_2) \rightarrow (e_3, e_4)$ and $(e_3, e_5) \rightarrow (e_6, e_7)$.

- The bound is too pessimistic: Not every step yields the smallest possible improvement $\Delta \approx 1/(n^4 \log n)$.
- Consider two consecutive steps: They yield $\Delta + \Delta_2 > 2\Delta$.
- Consider linked pair: $(e_1, e_2) \rightarrow (e_3, e_4)$ and $(e_3, e_5) \rightarrow (e_6, e_7)$.
- Sequence of t consecutive steps, contains $\Omega(t)$ linked pairs:

- The bound is too pessimistic: Not every step yields the smallest possible improvement $\Delta \approx 1/(n^4 \log n)$.
- Consider two consecutive steps: They yield $\Delta + \Delta_2 > 2\Delta$.
- Consider linked pair: $(e_1, e_2) \rightarrow (e_3, e_4)$ and $(e_3, e_5) \rightarrow (e_6, e_7)$.
- Sequence of t consecutive steps, contains $\Omega(t)$ linked pairs:

• $\Delta_{\text{Linked}} \approx 1/(n^{3+1/3} \log^{2/3} n).$

Introduction

3 Upper Bound

Smoothed Analysis

Smoothed Analysis

Each point $i \in \{1, ..., n\}$ is chosen independently according to a probability density $f_i : [0, 1]^2 \rightarrow [0, \phi]$.

Smoothed Analysis

Smoothed Analysis

Each point $i \in \{1, ..., n\}$ is chosen independently according to a probability density $f_i : [0, 1]^2 \rightarrow [0, \phi]$.

	General TSP	Euclidean metric	Manhattan metric
average	$n^{3+o(1)}$	$\tilde{O}(n^{4.33})$	$\tilde{O}(n^4)$
smoothed	$m \cdot n^{1+o(1)} \cdot \phi$	$\tilde{O}(n^{4.33}\cdot\phi^{2.67})$	$ ilde{O}(n^4\cdot\phi)$
worst-case	$2^{\Omega(n)}$	$2^{\Omega(n)}$	$2^{\Omega(n)}$

- Worst Case: $O(\log n)$
- Worst Case: $\Omega(\log n / \log \log n)$

- Worst Case: $O(\log n)$
- Worst Case: $\Omega(\log n / \log \log n)$
- Average Case: O(1)

- Worst Case: $O(\log n)$
- Worst Case: $\Omega(\log n / \log \log n)$
- Average Case: O(1)
- Smoothed: $O(\sqrt{\phi})$

Worst-Case Analysis

- Analyze the diameter of the 2-Opt state graph.
- Analyze particular pivot rules like "largest improvement".

Probabilistic Analysis

- Show exact bounds on the running time of 2-Opt and k-Opt.
- Show small constant approximation ratio for 2-Opt on random Euclidean instances.

Thanks! Questions?