```
    Online Motion Planning, SS 16
                        Exercise sheet 9
University of Bonn, Inst. for Computer Science, Dpt. I
```

- You can hand in your written solutions until Wednesday, 22.06., 14:15, postbox in front of room E. 01 LBH.

Exercise 25: Simple Street Strategy

Let us assume that for the current vertices v_{r} and v_{l} the agent use the precise bisecting angle of the opening angle until either v_{r} or v_{l} changes.

Analyse the Bisecting-Angle-Strategy for a triangle where v_{r} and v_{l} do not change. Find the worst-case ratio!

Figure 1: Moving along the bisecting angle!

Exercise 26: Steet strategy for small angles

In the lecture we presented an optimal path for the street searching problem for opening angles $0 \leq \varphi_{0} \leq \pi / 2$ by setting $\sqrt{2}\left(\ell_{1}-\ell_{2}\right)=\sqrt{2}\left(r_{1}-r_{2}\right)$. The reason was that we would like to guarantee $w \leq \min \left\{\sqrt{2}\left(\ell_{1}-\ell_{2}\right), \sqrt{2}\left(r_{1}-\right.\right.$ $\left.\left.r_{2}\right)\right\}$.

1. Explain the idea of the above requirement for small angles. Show that the change of reflex vertices is not a problem in the backward analysis of this case.
2. The corresponding curve is a hyberbola, present its parameter form for given starting values l and r, similar to the large angle case handled in the lecture.

Exercise 27: Combine strategy parts

Present a formal argumentation that the application of the WCA-strategy for a sequence of funnel situations achieves a competitive ratio of $\sqrt{2}$.

