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Chapter 4

Exploration in polygons

We would like to consider the exploration task for polygons by an agent equipped with a vision system.
The results can be applied to the framework of the preceding section. We are searching for a short path
that sees all points in the polygon at least once. For a simple polygon the overall shortest such paths can
be computed in polynomial time, if the polygon is given. There are also online algorithms that explores
an a priori unknown simple polygon by a constant competitive strategy in comparison to the shortest
offline path. For polygons with obstacles (holes) no such algorithms exist.

4.1 Simple polygons

A simple polygons is enclosed by a simple polygonal chain without self intersections. In the competitive
sense we compare online exploration strategies with offline strategies.

The problem of computing the shortest round trip that sees all points in the polygon was introduced
by 1986 by Chin and Ntafos as the Shortest Watchman problem; see [CN86]. Since then many authors
have considered the Shortest Watchman Route (SWR) problem, sone of which have been erroneous.
Other have been improved in the running time. Currently, it is meant to be common sense that the
following result gives the best algorithm.

Theorem 4.1 (Dror, Efrat, Lubiw, Mitchell, 2003)
For a simple polygon with n vertices and a start point s, there is an algorithm that computes the Shortest
Watchman Route in time O(n’logn). [DELMO03]

First, we consider simple polygons and within this class of polygons special subclasses; see Fig-
ure ??. Polygons of these classes allow efficient computations.

Definition 4.2 A simple polygon P is denoted as monotone, if there exists a line ¢, such that for any
line I orthogonal to [ the intersection PN/’ is path-connected. This means that the intersection PN/’
is a single segment, a point or empty. If ¢ is in parallel to the Y-axis, the polygon P is denotde as y—
monotone.

A simple polygon P is denoted as rectinlinear, if any inner angle is either of 90° or of 270°.

The most simple case for the computation of a SWR is given for monotone and rectilinear polygons:

Theorem 4.3 (Chin, Ntafos, 1986)
For a rectilinear and monotone polygon, the SWR can be computed in O(n) time. [CN86, CNS8S]

Exercise 23 Present a linear time algorithm for the proof of the above Theorem.
In general, for the computation of the SWR we can concentrate on discrete parts of the polygon. It

suffices to visit the essential cuts, defined as follows. The invisible parts of the polygons lie behind reflex
vertices, i.e., vertices with inner angle larger than 7.



94 Chapter 4 Exploration in polygons

N
® (i)

Figure 4.2: (i) A “corner” situation: Several cuts intersect and in a row and a single cut intersects more than one
other cut. (ii) A polygon and its SWR.

Definition 4.4 Consider the extension of a an edge of a reflex vertex that points into the inner part of
the polygon until it hits the boundary. Such segments are denoted as cuts. For the two cuts starting at a
reflex vertex the cut emanating from the invisible edge (w.r.t. the start point) has to be crossed in order to
see both edges. These cuts are called necessary cuts. For a necessaryl cut ¢; let P, denote the sub-part
of the polygon P behind ¢; w.r.t. the start point. The agent has to move inside P,,. A necessary cut c;
dominates a necessary cut ¢; if P, C P; holds. In this case any path from the start that visits P, visits
the larger polygon P, first. A necessary cut ¢; that is not dominated by any other necessary cut is denoted
as an essential cut. It is clear that for the SWR it is sufficient to visit all essential cuts.

Necessary cuts that will be dominated will be explored on the path to the corresponding essential
cut. Figure 4.1 shows an example with necessary and essential cuts. Here c3 and cs are not essential, any
path to ¢4 will visit the cuts. More precisely, ¢4 dominates c¢3 and c¢s. With the help of the cuts we can
formulate some structural properties:

(i) The SWR and any other exploration tour has to visit all essential cuts. The set of essential cuts is
the smallest set of cuts that has to be visited for seeing the whole polygon.

(i1) If the essential cuts do not intersect, they have to be visited in their order along the boundary. In
this case from the SWR the cuts will be visited by specular reflection. The incoming angle for the
visit of each cut is the same as the outgoing angle.

(iii) If some essential cuts intersect in a row, we call this a “Corner” situation. In this case it might
happen that some cuts are just passed by the SWR and are not visited by specular reflection; see
Figure 4.2. This makes the corner situation difficult.

For a polygon and a start point s we can order the cuts by the order they appear along the boundary,
independent from the position of the corresponding reflex vertex; see Figure 4.1. In the corner situation
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the SWR need not visit the essential cuts in this order; see Figure 4.3.

Interestingly, the corresponding polygons P, are still visited in the order of the corresponding cuts.
In Figure 4.3 we have the visiting order Py, P>, P3, Py, Ps, Ps. This is meant as follows.

Although, we first enter P; the SWR actually visits P; and P; at a single point first. By chance we are
also in Ps at this point, visit P3 immediately and the order is maintained in this sense. Pre-visits do not
count. This means that the task is: Computed the shortest tour that visits the polygons P, by the order
along the boundary.

We will pick up this idea later on. First we consider the simple case of a rectilinear polygon. In
a rectilinear polygon everything is less complicated. We do not have complicated corner situations.
Essential cuts have successive intersections for max three orthogonal cuts; see Figure 4.3. We conclude.
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Figure 4.3: In a corner situation the SWR visits the polygons P, (here P;) by the order of the corresponding
essential cuts along the boundary. In rectilinear polygon essential cuts will never be passed.

Lemma 4.5 For a rectlinear polygons the SWR visits the essential cuts by the order along the boundary.

Proof. For the rectinlinear case a corner situation can occur with maximal €2
three cuts, where the first and the last one run run in parallel and do not
intersect. Moving into the corresponding polygons P, gives a detour. It
is needless to pass a cut in order to reach another cut. Therefore all cuts
will be visited one after the other.

Assume that the visits do not follow the order along the boundary. In this
case the SWR R will have an intersection somewhere; see the Figure. We can simply change the Srder
locally in order to obtain R’ that runs from s ¢y,x,c3,c3,x to s. This is also a tour that has the same
property. In the vicinity of the intersection x we can even locally (and globally) improve the tour by
some shortcuts. O

Lemma 4.5 gives the key-idea for the computation of the SWR:

Theorem 4.6 (Chin, Ntafos, 1986)
The Shortest Watchman Route in a simple, rectilinear polygon can be computed in O(n) time.  [CN86,
CNS8S8]

Proof. Algorithm 4.1 computes the SWR in a rectilinear polygon, Figure 4.4 shows an example.

The essential cuts can be commputed in O(n) time (exercise left to the reader). It has to be shown
that P”, has no more than O(n) edges or triangles. All other running times stem from standard offline
algorithms for polygons. We consider dual graph, 7%, of the triangulation. Successively visiting the
cuts along the corresponding triangles is simply Depth-First runs through 7*. Any edge of 7™ is visited
exactly twice. This means that also any triangle occur only twice in P”, the number of triangles and
edges in P” is in O(n). O
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Exercise 24 Show that the essential cuts in a rectilinear polygon of n vertices can be computed in O(n)
time.

Algorithm 4.1 Shortest Watchman Route for rectilinear polygons

e Compute the essential cuts cy,...,c; and order them along the boundary from s. O(n)
e Cut of the corresponding sub-polygons P, behind the cuts. This gives a polygon P’. Some of the
essential cuts get smaller. O(n)
e Compute a triangulation for P’. O(n)
e Compute a chain of triangles P” by the “Roll-Out” of P': O(n):
— Let PV be the relevant triangles of P’ along the path in the dual graph of the triangulation,
T* , from s to c;.
— For any essential cut ¢;, i =2, . .., k: Extend P(—1 to P by the chain of the relevant triangles
along the boundary of P’ on the path from ¢;_; to ¢; and reflected at the ¢; ;.
- Extend P to P as above by the relevant triangles on the path from ¢ to s and by reflection
on c. There will be a copy s’ of s.
e P"is a sequence of triangles. Compute the shortest path 7 from s to s" in P”. O(n)

e The SWR can be build by mirroring back the line segments of the path at the cuts c;.

Algorithm 4.1 can be applied to any polygon in the same way, if any essential cut of the polygon
intersect with exactly one other essential cut. In this case Lemma 4.5 holds. In general polygons this
will not be the case. Many essential cuts can intersect in a row with multiple intersections of a single cut
with others. We call such situations a “corner” situation. In a corner, the order of the visits of the cuts is
non-trivial.

First, we would like to argue, that the above algorithm can be easily made depth-restricted. For this
we only have to restrict the set of essential cuts. An essential cut blocks the visibility of points closely
behind the reflex vertex of the cut. We consider a non-visible point that has the closest distance to the
start 5. In principle this point is arbitrary close to the reflex vertex. So the distance to the reflex vertex
gives the distance to the cut. In Figure 4.5(i) the rightmost essential cut has distance / > d.

We would like to see all points in P with distance less than or equal to d from s. Let P(d) denote this
part of P. Obviously, it is sufficient to visit all essential cuts that has a distance < d. > d to the start s;
see Figure 4.5(ii). We apply the same algorithm.

For simple, rectilinear polygons we conclude: Explopp(d) = Explyy,(d). This means that for the
offline case we have B = 1 and Cg = 1 for the exploration of P(d) and the application of Theorem 3.24
gives an 8-approximation of the optimal search ratio. Suchpfades.

Algorithm 4.2 Online exploration of a rectlilinear polygon
while Polygon is not fully explored do
Consider the next reflex vertex along the boundary in cw order.
Move orthogonally to the corresponding cut.
end while

In the online version of the problem, the poygon is a priori not known. Nevertheless, we can design an
efficient online algorithm. There are no corner situations and we can visit the cuts of the reflex vertices by
the Greedy-Algorithm 4.2; see also Figure 4.6. Starting from s at the boundary we successively expand
the visible part of the boundary and always approach the next reflex vertex by a move orthogonal to its
cut. This gives an L;-optimal exploration path. We have the following result:
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Figure 4.4: Computing the SWR in a rectinlinear polygon.
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Figure 4.5: Computation of the SWR for all points with distance < d from s in a rectilinear polygon. It is sufficient
to ignore all cuts of distance > d.

Theorem 4.7 (Deng, Kameda und Papadimitriou, 1991)
A simple, rectilinear polygon can be explored online optimally w.r.t. the L-metric and with a competitive
ratio of V2 wort. the L,-metric . [DKP98]

Proof. We give a sketch of the proof. The Greedy-exploration approach give an optimal L;-path, since
the algorithm successively creates locally optimal L;-paths. In the first step the first cut will be visited
orthogonally by an optimal L;-paths. Assume that we are already along an optimal L;-path and have
visited a set of cuts in this fashion. The next cut is again visited orthogonally on the shortest L;-path. By
induction the agent moves along an overall shortest L;-path for visiting the necessary cuts.

We still have to move back. For this we simply assume that at the start point s there is an artificial
necessary cut. Also this last cut will be visited by an optimal L;-path, which gives an overall optimal L
round trip.

For the comparison to the optimal L,-SWR, we use the following sketch. Also the L,-SWR visits the

!For the L;-metric or Manhatten-metric the distance between two points p = (py, py) and g = (gx, qy) is defined by d(p, q) :=

|px — qx| + | Py — gyl; in the Ly- or Euclidean metric we have d(p,q) = \/(px —qx)?>+(py—qy)?.
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Figure 4.6: Path of the online heuristic and the SWR w.r.t. the L,-metric in a rectilinear polygon.

essential cuts in the order along the boundary. We shift the L;-path to the outer boundary such that the
L, SWR path is included and the L;-path still has the same length. For any two point of a segment of the
L>-SWR there is an optimal L;-path which can be considered to consist of two segments, we only have
to check detours of triangles; see Figure 4.8.

Thus, we consider a single triangle and by scaling we can argue that we have to consider the maxi-
mum of the f(x,y) = x+y for x> +-y? = 1. This means that f(y) = y++/1 — y2 has to be maximized. We
have f'(y) = 1 — —2— and the f” gets O for yyax = % This is a maximum of f and we have xpy,x = L\/—

and f(xmaX7)’max) = \/E O

L

Figure 4.7: Shifting an L;-optimal path, such that the L,-SWR is inside. The analysis of the detour for triangles is
sufficient.

y

Figure 4.8: The worst-case detour in a triangle is v/2.
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