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Figure 4.9: The worst-case detour in a triangle is v/2.

For the online variant we can restrict the algorithm to explore the polygon up to depth d. As before
we ignore all cuts where the reflex vertex has distance > d. The v/2-approximation against the SWR up
to depth d remains valid. Therefore for the application of Theorem 3.24 we conclude § = 1 and Cg = 1
and attain a 8+/2-approximation of the search ratio and the optimal search path.

Corollary 4.8 The optimal search path in a simple, rectilinear can be approximated within a factor of
8 in the offline case and within a factor of 8v/2 in the online case.

4.3 General simple polygons

As in the previous section we first concentrate on the offline computation of a SWR in a simple polygon.
As already shown in Figure 4.4 the sub-polygons P, of the essential cuts will be visited in the order along
the boundary. More generally we extract the following general computation task, which finally ends in
Theorem 4.1. A touring-a-sequence-of-polygons gives a generalization of the SWR computation.

Definition 4.9

(1) In the simple Touring Polygon Problem (TPP) version a sequence of simple, convex and disjoint
polygons Py, P;,. .., P, with n edges in total is given. Furthermore, a start point s and a target point
t is fixed. We are searching for the shortest path that starts in s, visits the polygons P; in the order
given by the index i and ends in 7.

(i1) In the general version of the TPP, the path between two successive polygons P; und Py (i =
0,...,k; Py :=s;P. :=1) can be forces to run in a so-called fence-polygon F;. The fence F;
is a simple polygon that contain P; and P,;. Additionally, the polygons might overlap, i.e., the
intersection of P; and P; need not be empty. In the presence of a fence for polygons P; and P,
it is allowed that only the boundary parts of P; and P;,; that do not belong to the boundary of the
fence form a convex chain. We call this part the facade of P; or P, |, respectively. More precisely
facade(P;) := oP;\ 0F;_;.

Figure 4.10: An example for the simple version of the Touring Polygon Problem.

The interpretaion of the TPP is as follows: It can happen that for j < i a polygon Polygon P; has
been visited by chance before polygon P; is visited, the first visit will be ignored, the polygon P; has
to be visited again. More precisely the visit of P; is valid, if the polygons P,...P;_ have been visited



104 Chapter 4 Exploration in polygons

Figure 4.11: An example for the general Touring Polygon Problem.

in this order before, Figure 4.10 shows an example for the simple TPP configuration and Figure 4.11
examplifies the general case. The dashed part of the boundary of Py is the facade of P4. Note, that Ps was
visited before Py is entered, we “register” the visit of Ps after P, was visited

Theorem 4.10 (Dror, Efrat, Lubiw, Mitchell, 2003)

For the general TPP with k polygons, k+ 1 fences and n edges in total for all polygons and fences there
is an algorithm that computes a query structure for the TPP in O(k*nlogn) time. The query structure
has a complexity of O(kn). For a fixed start point s and for any query target point t the shortest TPP path
can be computed in k”urzeste TPP-Pfad Zeit O(k logn + m) where m denotes the number of segments of
the shortest TPP path. [DELMO03]

Now let us come back to our initial SWR problem. We now sketch the proof of Theorem 4.1.

Proof. Let us assume that P and a start point s on the boundary is given. We construct a TPP input
(Pr,...,P,F1,... Fy,s,t) as follows. Let ¢; be the i-th essential cut of P along the boundary of P and
P, the corresponding sub-polygon. We set P; := P,,. Any fence will be the polygon P itself, which is
F; := P. The facades of any F; is given by the cut ¢;. Finally, we set t := s for returning to the start. The
SWR is the shortest path that starts at s visits the polygons P; in the given order inside the polygon P and
ends at s. The cuts ¢; build convex facades for the possibly non-convex polygons P;. This gives exactly
the task in the corresponding TPP. The complexity of the facades is in O(1) and the complexity of the
fence is in O(n). We can have Q(n) = k many polygons P... The running time is in O(n* logn). O

Figure 4.12: A greedy-exploration of the reflex vertices is not competitive in a non-rectilinear polygon.
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Figure 4.13: Polygon, Shortest Path Tree and examples for right and left reflex vertices.

Finally, we consider the online exploration of general simple polygons. The greedy approach for
rectilinear polygons explored the cuts of the reflex vertices in the order (of the vertices!) along the
boundary. Let us assume that in a general polygon we get some more information and all cuts are given.
If we explore the cuts in the order of the corresponding reflex vertices and construct the shortest (optimal)
path for this visiting order, the corresponding path can be arbitrarily large in comparison to the SWR of
the polygon. Figure 4.12 shows an example where the greedy approach with additional information does
not succeed w.r.t. a constant competitive approximation.

Figure 4.12 also shows that it makes sense to bundle the reflex vertices and subdivide them into cuts
that will be detected if the agent moves to the left and cuts that will be detected, if the agent moves to
the right. This is what the corresponding SWR does in principle. We would like to formalize this idea
by categorizing the reflex vertices correspondingly.

Definition 4.11 Let P be a simple polygon and s be a start point at the boundary of P. The Shortest
Path Tree, SPT(P,s), contains the shortest paths inside P that runs from s to the all vetices of P. The
SPT is the smallest set of segments that contains all the paths. W.r.t. the SPT a reflex vertex v of P is
denoted as a left vertex Ecke, if the SPT(P,s) makes a counter clockwise turn at v and right vertex, if
the SPT(P,s) makes a clockwise turn at v; see Figure 4.13. The interpretation is that w.r.t. the path from
s, v lies to the left or v lies to the right of the preceding vertex.

so=
Tl'.opt S

® (ii)
Figure 4.14: Looking around the corner in a competitive fashion.

Different from the rectilinear case we will not approach the reflex vertices orthogonally, we make
use of circular arcs. Consider Figure 4.14. The agent is located at s and detects the reflex vertex v. The
angle o for the cut is unknown because vertex v blocks the corresponding edge. Assume the agent moves
directly toward v. An adversary will choose a very large angle a0 — as in Figure 4.14(i) — such that an
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arbitrary short path orthogonal to the cut is sufficient. In this sense the direct path to the vertex is not
competitive.

Therefore we explore the vertex (or its cut) by a half-circle starting at s around the midpoint of sv
and radius |sv|/2. For approaching the cut this gives a competitive ratio of at most 5. For the above
looking-around-a-corner problem the exploration by the half-circle is not the overall best strategy, as
will be shown in the next section. In comparison to the optimal corner strategy the half-circle strategy
can be easily analysed and has nice properties against the shortest path.

The half-circle exploration is not the overall best strategy for looking around a corner. A refined
analysis shows the following result:

Theorem 4.12 (Icking, Klein, Ma, 1993)
The problem of looking around a corner can be solved within an optimal competitive ratio of ~ 1.212.
[IKM94]

We first formally show the competitive ratio of the half-circle strategy for detecting the cut and also
give a simple lower bound.

Theorem 4.13 The unknown cut of a reflex vertex in a simple polygon can be detected by a half-circle
strategy within a competitive ratio of T/2 against the shortest path to the cut. It can be shown that there

is no online strategy that explores any corner (visit the cut) within a ratio less than %

Proof. We consider the normalized version of the problem from Figure 4.15. For the offline optimal
solution either the vertex O will be visited directly or the cut will be approached orthogonally, the cut is
not know which is indicated by the unknown angle ¢. for ¢ € [0, 7,] the orthogonal distance sin@ gives
the optimal solution. For @ € [r,, 7| the shortest path to O of length 1 is optimal.

We compare the optimal solutions to the half-circle strategy for any ¢. Until the half-circle finally
hits O at angle ¢ = /2 (and therefore for all ¢ € [n,,7]), the half-circle strategy has arc length ¢ for
any @ € [0,7,]. For all possible cuts with angle ¢ € [n,, 7| we attain a ratio G(¢) = n_{z For the case
¢ € [0,m2] we have H(9) = F5. The first derivatives gives H'(¢) = Sm(z;]% and by simple analysis

we have H'(¢) > 0 for @ € (0,m/2]. Therefore in both cases the ratio 7 is the worst-case.

09—

Tl

Figure 4.15: The optimal path to the unknown cut either is given by the direct path to O of length 1 for ¢ € [, 7|
or is given by an orthogonal path of length sin@ for @ € [0,m,]. For the half-circle strategy the worst-case ratio is
attained at ¢ = 1/2 with a ratio of /2.
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For the lower bound we consider Figure 4.16. We provide a bit more information for the online
strategy. Either ¢ is exactly § or @ = 7. In the first case the optimal path has length sin7/6 and in the
second case the optimal path has length 1.

D
#

sinm/6 ¥ W

Figure 4.16: The lower bound construction gives a ratio of % If the strategy visits the /6-cut to the right to X,

the /6-cut is the given cut. If the strategy visits the 7t/6-cut to the left to X, the m/2-cut is the given cut. Both
cases gives a ratio of %

Any strategy will visit the /6-cut somewhere (may be also at the end at point O). Therefore we
consider the isosceles triangle with ground length OW and two angles of size /6. This means the one
segment if the triangle runs in parallel with the /6. Consider the vertex X of the triangle on the 7t/6-cut.
Either an online strategy visits the 7/6-cut to the left or to the right of X. Both cases might include that
exactly X is visited.

In the first case (visit to the left of X), the adversary present the 7t/2-cut as the true cut and the agent

now moves toward O. The optimal path has length 1, whereas the strategy runs at least 2 - W =

2- ? = % In the latter case the (visit to the right of X), the adversary present the T/6-cut as the true
1
cut, the ratio is at least siani 75 = % In both situations the same worst-case ratio is attained. O

We will now sketch the ideas for the competitive only exploration of a general polygon by a recursive
subdivision of the reflex vertices in groups of left and right vertices and by a consequent successive
exploration of the groups by half-circles.

By Algorithm 4.3 we explore a single right vertex. The strategy manages two lists of vertices. The
TargetList contains right vertices that have been detected (but not explored) ordered in ccw-order along
the boundary. Right vertices, that will be detected by ExploreRightVertex and that do not lie behind left
vertices of the SPT, will be inserted into TargetList during the execution of ExploreRightVertex. It might
happen that the goal vertex Target changes during the execution. In this sense ExploreRightVertex does
not only explore a single right vertex, the target changes. The exploration is restricted to a set of right
vertices that subsequently lie along the boundary such that no left reflex vertex occurs in between. The
goal is to explore all vertices of the sequence. We consider the exploration as shown in Figure 4.17 and
exemplify the usage of Algorithm 4.3.

The agent starts in s. We initialize BasePoint by s and TargetList contains only r;. The target r; is
visible. Back is also s. We follow the half-circle arc(s,r) until the next right vertex r; is detected at e,
(the first event). Since r, does not lie behind a left vertex and lies in ccw-order behind | we insert r,
into the target list TargetList. In cw-order r; lies in front of r; and r; is the first element of the target
list. Therefore there is an update of Target and the agent now moves along the half-circle arc(s,r;). At
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Algorithm 4.3 Exploration of a right vertex.
ExploreRightVertex( TargetList, ToDoList ):

BasePoint := current position of the agent.
Target := first vertex of TargetList.
while Target is no longer visible do
Move along shortest path from BasePoint toward Target.
end while
Back := last polygon vertex reached along the
shortest path from BasePoint to the current position.
while Target is not fully explored do
Move along halfcircle arc(Back, Target) in cw-order.
Update TargetList, ToDoList, Target, Back during the task.

/I Special situations during the half-circle move:
if the boundary of P blocks the move then
Follow the boundary until the half-circle can be continued.
end if
if Target will get out of sight by a vertex then
Move toward Target to the vertex, that blocks the sight.
end if
end while

the second event e, the visibility to the current target gets blocked by ¢, which is the second special
situation. The agent moves toward the target r, to . At {; we update Back := ¢, since we reached a
polygon vertex. Now we move along the arc arc(¢,r;). Close behind ¢; the BasePoint s is no longer
visible and still Back := | remains true. At event e3 the s gets visible again, we are no longer at a vertex
and we set Back := s. Note that the BasePoint will be s all the time. At event e4 the current Back point
s vanishes again, we set Back := r; and run along the half-circle arc(r,r;). At event es the next right
reflex vertex r3 in ccw-order is detected, inserted into 7argetList and gets the new Target. Therefore we
move along the half-circle arc(¢;,r3) until at e the r; (Back) gets out of sight and we set Back := r,
and continue with arc(r;,r3). This movement is blocked betweem e7 and eg from the boundary where
the first special situation is used and the agent follows the boundary until picking up arc(r,,r3) again.
Finally, r3 is fully explored. The vertex r3 defines an essential cut that dominates the cuts of | and r».

Since the current target Target is explored, the procedure Algorithm 4.3 ends. It might be the case that
TargetList still contains non-explored reflex vertices. In general the procedure Algorithm 4.3 is part the
procedure ExploreRightGroup that explores such a group of reflex vertices successively by Algorithm 4.3
with corresponding BasePoints.

Algorithm 4.4 Exploration of a group of right vertices.
ExploreRightGroup( TargetList, ToDoList ):

StagePoint := current position of the agent.

ToDoList := 0

while TargetList is non-empty do
ExploreRightVertex( TargetList, ToDoList ).
For the current cut, move along the point on the cut that has the shortest distance (in P) to the
StagePoint, update TargetList and ToDoList.

end while

Move along the shortest path (in P) back to StagePoint.

We exemplify ExploreRightGroup (Algorithm 4.4) and its interplay with ExploreRightVertex by Fig-
ure 4.18. Beginning at s as the current stage point and with the first single target r; in the target list
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Figure 4.18: Exploration of a group of right vertices.

we start ExploreRightVertex. Analogously, to the above description at event e the vertex r, is detected
and arc(s,r) is started. r, is the new Target Since the vertices rg and r3 which are detected during the
movement of arc(s,r,) up to e, do not lie behind (in ccw-order) r, they will not become new targets in
the procedure ExploreRightVertex. In the current target list TargetList rg and r3 lie behind r,. In e, the
current target vertex r; is fully explored and ExploreRightVertex ends here. Fortunately, w.r.t. the current
Back point s the segment se; is orthogonal to the cut of r,, the agent is located at the point on the cut
with the smallest distance back to the Back point.

Now in ExploreRightGroup the procedure ExploreRightVertex is called up again with r3,rg in the
target list. This exploration ends at e3. The vertices r4 and r5 are detected (and inserted in the target list)
during the walk along arc(s,r3). Note that r¢ is deleted during an update of the list. rg was expored. The
vertices 4 and r5 do not lie behind r3 and therefore first r; is fully explored and ExploreRightVertex ends
again.

In between the Back point has changed to r;. Now w.r.t. the cut of r3 at e3 the agent is not located
at a point on the cut of r3 that has the shortest distance to the stage point s (and also to the current
Back point). Therefore we move to such a point e4 along the cut of r3. This movement is part of the
ExploreRightGroup procedure. Now ExploreRightVertex is applied with target r4 and current back point
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r1 so that the arc arc(ry,r4) is used until this procedure end at es.

The current back point has changed to rg and the ExploreRightGroup forces the agent to slip along
the cut of r4 to move to the point closest to r¢ and s. The TargetList is updated in between and also rs is
deleted out of TargetList. Now the TargetList is empty and in our case we return to the StagePoint which
is s in this case.

The procedure ExploreRightGroup is used in the frame procedure Algorithm 4.5. This procedure
builds up groups of left and right vertices which are explored in an alternating way. The usage of Ex-
ploreRightGroup goes into the depth in the sense that there is a list of stage points (StagePoint) (back
points on the shortest path back to s) stored in the ToDoList that will be used as starting points for the
procedure ExploreRightGroup. Analogous procedures for the exploration of left vertices and groups of
left reflex vertices will be used.

The main procedure starts with the exploration of a right group from the start and returns to the start.
After that all known left vertices are ordered along the boundary and the same group procedure is called
for the left vertices from the start. Then the recursion starts by moving to the stage points and recall the
procedures from there.

Algorithm 4.5 Exploration of simple polygons.
ExploreRightGroupRec( TargetList ):
ExploreRightGroup( TargetList, ToDoList ).
for all Vertex v in ToDoList do
Move along the shortest path to v.
NewTargetList := all detected left vertices,
which are successor of v in the SPT.
ExploreLeftGroupRec( NewTargetList ).
end for

ExplorePolygon( P, s ):

TargetList := right vertices visible from s, sorted in cw-order
along the boundary of P .

ExploreRightGroup( TargetList, ToDoList )

TargetList := detected left vertices, lying behind (in the SPT) the vertices
of ToDolList .

Additionally add all from s visible left vertices to TargetList.

Sort TargetList in ccw-order.

ExploreLeftGroupRec( TargetList ).

Theorem 4.14 (Hoffmann, Icking, Klein, Kriegel, 1998)
The strategy PolyExplore explores an unknown simple polygon within a competitive ratio of 26.5 against
the SWR. [HIKKOI]

The ratio of 26.5 might appear to be huge, in fact it is an improvement of the ratios 133 (Hoffmann
etal. [HIKK97]) or 2016 (Deng et al. [DKP91]) previously known. Indeed, the ratio is merely a result of
the analysis. The best known lower bound for the strategy was given by an example where the ratio is
roughly 5. The conjecture is that the ratio of the strategy is indeed close to 5, whereas a full proof can
only be given for 26.5.

The online and the offline strategies given above can be easily restricted to a depth d. As mentioned
before it suffices to ignore all reflex vertices with distance > d. This means that the approximation factors
of 26.5 and 1 remain valid for the depth-restricted case. Note that the SWR for depth d might leave P(d);
see Figure 4.19.

For the online case we can make use of B = 1 and Cg = 26.5 for the exploration of P(d), in the offline
case we have = 1 and Cg = 1. Application of Theorem 3.24 gives the following result:
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Corollary 4.15 The optimal search path and the optimal search ratio for general simple polygons can
be approximated offline within a ratio of 8 and online within a ratio of 212.

Figure 4.19: In this case SWR(d) leave the part P(d). PolyExplore keeps inside P(d).

4.4 Polygons with holes

In the previous section competitive strategies for the exploration of simple ploygons were presented. We
would like to show that in a scene with polygonal obstacles such results cannot be obtained. We consider
non-simple polygons which means that the polygon has holes (or obstacles) inside. These holes are non
interescting and they are given as simple polygons itself.

The task of exploring a polygon with holes is much more complicated. At the first place the compu-
tation of the SWR is NP-hard. There is a simple reduction of the TSP problem by placing small obstacles
around the corresponding point set. Furthermore, for simple polygons it can be shown that it suffices to
explore the boundary. More precisely, if the boundary of a simple polygon P was seen along an explo-
ration path, also any point inside P has been seen by the path. This is not true for polygons with holes as
depicted in Figure 4.20. The path 7 sees the boundary of all obstacles and the outer boundary, but there
is still a portion of the polygons that is not explored.

Figure 4.20: A polygon with holes. The path detects the full boundary but not all points inside P have been seen.

We can show that there is no strategy that explores any polygon with holes within a constant com-
petitive ratio against the shortest exploration path.

Theorem 4.16 (Albers, Kursawe, Schuierer, 1999)
Let A be an arbitrary online strategy for an agent with a vision system for the exploration of a polygon
P with holes. Let n denote the overall number of vertices of P. we have [AKSO2]

[mal = Q(Vn) - [Topt].
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Figure 4.21: The lower bound construction for the exporation of a polygon with holes and a sketch of the optimal
offline path T,p;.

Proof. We recursively construct a polygonal scene as shown in Figure 4.21. The starting scene consists
of k+ 1 thin rectangles of length W = 2k and arbitrarily small height, called spikes, and k rectangles of
width 1 and height 1, the so-calles bases. The construction has height roughly H; = k. The agent starts at
the lower left corner. Between a spike and a base there is an arbitrary thin corridor, so that the agent can
move inside and have a look behind the base. Behind one of the bases the situation appears recursively,
again with k spikes of length W; = 2k — i and k bases of width 1. The overall height is H; := W The
agent does not know whether the next sub-problem has the bases on the left or on the right side.

The construction will be repeated k times with values H; | = 2% and W =W, —1fori=2,...,k—1,
starting with H; = k — 1 und W} = 2k. This means that we have k sub-problems, each nested behind the
base of a previous one (up to the starting problem). Altogether, we have k x (2k + 1) rectangles and
4k x (2k+ 1) = n edges, with k € Q(\/n).

The strategy A has to see all points. In the first stage for finding the second block, the agent can
either look behind the k bases from the left by moving distance 2k-1 or moves to the right (distance 2k)
and then upwards. For both cases the next block will be presented at the last visit. In the first case the
next base rectangles are located to the left, in the latter case the next base rectangles are located to the
right. So the same situation occurs again. This means that the agent has to move at least k times distance
k which gives Q(k?) in total. This means |ms| € Q(k?).

The optimal offline strategy directly moves to the base where the next recursive sub-problem is
nested. Then the sub-problem is explored optimally with path length 2H;. Finally, the agent has to move
to the right upper corner and moves back along the left side to look behind all bases; see Figure 4.21.

We have

k
Topd| = 2W1+2) H;
i=1

k
1
= 2W1+2H127

= (2k)i—l
= 4k+2k <(

)~ 2%(1- (%))

Sl

1
>:4k+2k

1
(57) —1 2k—1
< 8k.
This gives a ratio of Q(k) = Q(/n) which gives the bound Q(,/n). O

Finally, by a simple trick we show that also the optimal search path cannot be approximated within
a constant ration. The optimal search path for the above situation might decide to detect a point that has
distance 1 from the start after Q(k) steps, therefore the search ratio might be .

To avoid this situation we shift the start k steps away from the block construction as shown in Fig-
ure 4.22. Now any non-visible point has distance at least k. An optimal exploration path has length at
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most 10k and gives a constant approximation of the search ratio (which is a constant). As shown above
any online strategy will detect the last point distance at most 4k away after at least Q(k?) steps. Thus the
search ratio is in Q(k).

Corollary 4.17 For polygons with holes there is no strategy that approximates the optimal search path
and the search ratio within by a constant factor.

2k

)
recursive subproblem [}
(]

0(k)

k

i
H

Figure 4.22: Shifting the start point away means that any invisible point has distance ®(k), this gives a constant
search ratio for the best offline exploration path.




114 Chapter 4 Exploration in polygons




BIBLIOGRAPHY

Bibliography

[Ad80]

[AFMO00]

[AGO3]

[AKSO02]

[BRS94]

[BSMMO0]

[BYCRO3]

[CN86]

[CN88]

[DELMO3]

[DHNO7]

[DIMWO1]

[DKKO1]

[DKKO06]

[DKP91]

[DKP98]

H. Abelson and A. A. diSessa. Turtle Geometry. MIT Press, Cambridge, 1980.

E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell. Approximation algorithms for lawn mowing
and milling. Comput. Geom. Theory Appl., 17:25-50, 2000.

Steve Alpern and Shmuel Gal. The Theory of Search Games and Rendezvous. Kluwer
Academic Publications, 2003.

Susanne Albers, Klaus Kursawe, and Sven Schuierer. Exploring unknown environments
with obstacles. Algorithmica, 32:123-143, 2002.

Margrit Betke, Ronald L. Rivest, and Mona Singh. Piecemeal learning of an unknown en-
vironment. Technical Report A.I. Memo No. 1474, Massachusetts Institute of Technology,
March 1994.

Ilja N. Bronstein, Konstantin A. Semendjajew, Gerhard Musiol, and Heiner Miihlig.
Taschenbuch der Mathematik. Verlag Harry Deutsch, Frankfurt am Main, 5th edition, 2000.

R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Inform. Comput.,
106:234-252, 1993.

W. Chin and S. Ntafos. Optimum watchman routes. In Proc. 2nd Annu. ACM Sympos.
Comput. Geom., pages 24-33, 1986.

W. Chin and S. Ntafos. Optimum watchman routes. Inform. Process. Lett., 28:39-44, 1988.

Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell. Touring a sequence of
polygons. In Proc. 35th Annu. ACM Sympos. Theory Comput., pages 473-482, 2003.

G. Das, P. Heffernan, and G. Narasimhan. LR-visibility in polygons. Comput. Geom. Theory
Appl., 7:37-57, 1997.

G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration as graph construction.
Transactions on Robotics and Automation, 7:859-865, 1991.

Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. Optimal constrained
graph exploration. In Proc. 12th ACM-SIAM Symp. Discr. Algo., pages 307-314, 2001.

Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. Optimal constrained
graph exploration. ACM Trans. Algor., 2:380-402, 2006.

X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environment. In
Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 298-303, 1991.

Xiaotie Deng, Tiko Kameda, and Christos Papadimitriou. How to learn an unknown envi-
ronment I: The rectilinear case. J. ACM, 45(2):215-245, 1998.



116

BIBLIOGRAPHY

[EFK*+06]

[FKK+04]

[Gal80]

[GKP98§]

[GRO3]

[HIKK97]

[HIKKOT]

[HIKL99]

[IKKLOOa]

[TKKLOOb]

[IKKLOS]

[IKL97]

[IKL99]

[IKL"04]

[IKM94]

[IPS82]

Andrea Eubeler, Rudolf Fleischer, Tom Kamphans, Rolf Klein, Elmar Langetepe, and Ger-
hard Trippen. Competitive online searching for a ray in the plane. In Sandor Fekete, Rudolf
Fleischer, Rolf Klein, and Alejandro Lopez-Ortiz, editors, Robot Navigation, number 06421
in Dagstuhl Seminar Proceedings, 2006.

Rudolf Fleischer, Tom Kamphans, Rolf Klein, Elmar Langetepe, and Gerhard Trippen.
Competitive online approximation of the optimal search ratio. In Proc. 12th Annu. Eu-
ropean Sympos. Algorithms, volume 3221 of Lecture Notes Comput. Sci., pages 335-346.
Springer-Verlag, 2004.

Shmuel Gal. Search Games, volume 149 of Mathematics in Science and Engeneering.
Academic Press, New York, 1980.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics. Addison-
Wesley, 1998.

Yoav Gabriely and Elon Rimon. Competitive on-line coverage of grid environments by a
mobile robot. Comput. Geom. Theory Appl., 24:197-224, 2003.

Frank Hoffmann, Christian Icking, Rolf Klein, and Klaus Kriegel. A competitive strategy
for learning a polygon. In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pages 166—
174, 1997.

Frank Hoffmann, Christian Icking, Rolf Klein, and Klaus Kriegel. The polygon exploration
problem. SIAM J. Comput., 31:577-600, 2001.

Christoph Hipke, Christian Icking, Rolf Klein, and Elmar Langetepe. How to find a point
on a line within a fixed distance. Discrete Appl. Math., 93:67-73, 1999.

Christian Icking, Thomas Kamphans, Rolf Klein, and Elmar Langetepe. Exploring an un-
known cellular environment. In Abstracts 16th European Workshop Comput. Geom., pages
140-143. Ben-Gurion University of the Negev, 2000.

Christian Icking, Thomas Kamphans, Rolf Klein, and Elmar Langetepe. Exploring an un-
known cellular environment. Unpublished Manuscript, FernUniversitit Hagen, 2000.

Christian Icking, Tom Kamphans, Rolf Klein, and Elmar Langetepe. Exploring simple grid
polygons. In /1th Internat. Comput. Combin. Conf., volume 3595 of Lecture Notes Comput.
Sci., pages 524-533. Springer, 2005.

Christian Icking, Rolf Klein, and Elmar Langetepe. Searching for the kernel of a polygon:
A competitive strategy using self-approaching curves. Technical Report 211, Department
of Computer Science, FernUniversitit Hagen, Germany, 1997.

Christian Icking, Rolf Klein, and Elmar Langetepe. An optimal competitive strategy for
walking in streets. In Proc. 16th Sympos. Theoret. Aspects Comput. Sci., volume 1563 of
Lecture Notes Comput. Sci., pages 110-120. Springer-Verlag, 1999.

Christian Icking, Rolf Klein, ElImar Langetepe, Sven Schuierer, and Ines Semrau. An opti-
mal competitive strategy for walking in streets. SIAM J. Comput., 33:462-486, 2004.

Christian Icking, Rolf Klein, and Lihong Ma. An optimal competitive strategy for looking
around a corner. Technical Report 167, Department of Computer Science, FernUniversitit
Hagen, Germany, 1994.

A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in grid graphs. SIAM J.
Comput., 11:676-686, 1982.



BIBLIOGRAPHY 117

[KLO3]

[Kle91]

[K1e97]

[KPY96]

[Lan00]

[LB99]

[Lee61]

[LOS96]

[LS87]

[SchO1]

[Sha52]

[Sha93]

[SM92]

[SS99]

[Sut69]

[SV90a]

Tom Kamphans and Elmar Langetepe. The Pledge algorithm reconsidered under errors in
sensors and motion. In Proc. of the 1th Workshop on Approximation and Online Algorithms,
volume 2909 of Lecture Notes Comput. Sci., pages 165—-178. Springer, 2003.

Rolf Klein. Walking an unknown street with bounded detour. In Proc. 32nd Annu. IEEE
Sympos. Found. Comput. Sci., pages 304-313, 1991.

Rolf Klein. Algorithmische Geometrie. Addison-Wesley, Bonn, 1997.

Elias Koutsoupias, Christos H. Papadimitriou, and Mihalis Yannakakis. Searching a fixed
graph. In Proc. 23th Internat. Collog. Automata Lang. Program., volume 1099 of Lecture
Notes Comput. Sci., pages 280-289. Springer, 1996.

Elmar Langetepe. Design and Analysis of Strategies for Autonomous Systems in Motion
Planning. PhD thesis, Department of Computer Science, FernUniversitdt Hagen, 2000.

Sharon Laubach and Joel Burdick. RoverBug: Long range navigation for mars rovers.
In Peter Corke and James Trevelyan, editors, Proc. 6th Int. Symp. Experimental Robotics,
volume 250 of Lecture Notes in Control and Information Sciences, pages 339—348. Springer,
1999.

C. Y. Lee. An algorithm for path connections and its application. /RE Trans. on Electronic
Computers, EC-10:346-365, 1961.

Alejandro Lépez-Ortiz and Sven Schuierer. Walking streets faster. In Proc. 5th Scand.
Workshop Algorithm Theory, volume 1097 of Lecture Notes Comput. Sci., pages 345-356.
Springer-Verlag, 1996.

V. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a point mobile automaton
moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2:403—430, 1987.

S. Schuierer. Lower bounds in on-line geometric searching. Comput. Geom. Theory Appl.,
18:37-53, 2001.

Claude E. Shannon. Presentation of a maze solving machine. In H. von Foerster, M. Mead,
and H. L. Teuber, editors, Cybernetics: Circular, Causal and Feedback Mechanisms in
Biological and Social Systems, Transactions Eighth Conference, 1951, pages 169—181, New
York, 1952. Josiah Macy Jr. Foundation. Reprint in [Sha93].

Claude E. Shannon. Presentation of a maze solving machine. In Neil J. A. Sloane and
Aaron D. Wyner, editors, Claude Shannon: Collected Papers, volume PC-03319. IEEE
Press, 1993.

A. Sankaranarayanan and I. Masuda. A new algorithm for robot curvefollowing amidst
unknown obstacles, and a generalization of maze-searching. In Proc. 1992 IEEE Internat.
Conf. on Robotics and Automation, pages 2487-2494, 1992.

Sven Schuierer and Ines Semrau. An optimal strategy for searching in unknown streets. In
Proc. 16th Sympos. Theoret. Aspects Comput. Sci., volume 1563 of Lecture Notes Comput.
Sci., pages 121-131. Springer-Verlag, 1999.

Ivan E. Sutherland. A method for solving arbitrary wall mazes by computer. /EEE Trans.
on Computers, 18(12):1092-1097, 1969.

A. Sankaranarayanan and M. Vidyasagar. A new path planning algorithm for a point object
amidst unknown obstacles in a plane. In Proc. 1990 IEEE Internat. Conf. on Robotics and
Automation, pages 1930-1936, 1990.



118

BIBLIOGRAPHY

[SVI0b]

[SVO1]

[THLI98]

[Wal86]

[Web07]

A. Sankaranarayanan and M. Vidyasagar. Path planning for moving a point object amidst
unknown obstacles in a plane: A new algorithm and a general theory for algorithm devel-
opments. In Proceedings of 1990 IEEE Conf. on Decision and Control, pages 1111-1119,
1990.

A. Sankaranarayanan and M. Vidyasagar. Path planning for moving a point object amidst
unknown obstacles in a plane: The universal lower bound on the worst case path lengths
and a classification of algorithms. In Proc. 1991 IEEE Internat. Conf. on Robotics and
Automation, pages 1734-1741, 1991.

L. H. Tseng, P. Heffernan, and D. T. Lee. Two-guard walkability of simple polygons. Inter-
nat. J. Comput. Geom. Appl., 8(1):85-116, 1998.

Wolfgang Walter. Gewdohnliche Differentialgleichungen. Springer, 1986.

Maximilian Weber. Online suche auf beschrinkten sternen. Diplomarbeit, Rheinische
Friedrich-Wilhelms-Universitidt Bonn, 2007.



INDEX

D
U e see disjointunion Deng ............. ... .. oL, 101, 110
T-Layer .o 14 DFS .. 8, 11
1-Offset ... 14 diagonally adjacent ....................... 8,27
2-Layer . 14 Dijkstra ........c.ooiii i 19
2-OffSet vt 14 diSessa ... 45
disjoint UNion ............c.eeviiiiinnnnannn. 15
doubling ....... ... .. 92
lowerbound ................ ... il 5 doubling heuristic .......................... 62
Dror ... 97, 104
A Dudek ........ ... 40
Duncan ............ ... . ... 35, 37
Abelson ........... i 45
accumulator strategy ..............c...oo.... 31 E
adjacent ... 8
Albers 30, 111 Efrat ... 97, 104
AIDEI oo oo 63 error bound ......... . ..o 45
ANGUIAT COUNLET .+ vv e oeeee e 43 Euclidean metric .......................... 101
approxXimation .............c...oeeeiuieennn... 30 F
Arkin ... 30
facade ........ .. .. 103
B FEKEte ..ot 30
Backtrace .........o.viiiiiiiiiii 19 fence-polygon ... 103
backward analysis .......................... 33 Flezs?her ................................... 93
Betke 30 functionals ............ ... ... L. 62
Bug-Algorithms ... ... o\ooooeoe 50 funnel (polygon) ...t 82
funnel polygons ............ ... ... L. 82
C funnel situation ............. ... ... oL 82
CAB . 88 G
CAVES .t vttt ettt e 80 )
cell ..o 8 Gabriely ............ccooiiii 27,29
Ciroa-CONARLON + -+ o+ oo 46 Gal T ERLRLRTERTRRRTERTRRRERERTE 63
Cratf-CONAREON « + v vvvee oo, 47 Geometricsearch ........................... 920
Chin ... 97,98, 100 goal set ... 920
columns ....... ... 29 Greedy ......ocovvininiiiii 101
COMPEHIVE © .\t vtiet e 35,37 gr%d—environment “““““““““““““““ 8
configuration space ............ ... ... 46 gridpolygon ... 8,30
constrained ............. .ol 31 g
Constraint graph-exploration ................. 31
cow-path ............ . .. 62 Hit-Point ................ ... .. 52
current angular bisector ..................... 88 Hit-Points ........ ... ... . i 46
CUL « ettt e e 98 Hoffmann ..................c.cciiiiiin.. 110



120 INDEX
I NP-hart ................ ... iiviia.. 8,91
Ntafos ...........cco .. 97, 98, 100
Icking ................... 5, 18, 21, 88, 106, 110
TEAL oo 8 [0)
J Offline—Strategy .............ccoiiiiiiiiea.. 5
Java-Applet 18 Online-Strategy ............ccvviiiiieeeennnn. 5
Java-Applets - 43 Online-Strategy ...........ccooveiiiieinineann. 8
LT e optimal search path ......................... 91
Jenkin ......... ... . . . . . ... 40
K P
Kameda 101 Papadimitriou .................... 8,91, 93, 101
Kamphan.s """"""""""" 5 18 2] 49 93 partially occupied cells ...................... 23
Klein 5. 18, 21, 80, 88. 93. 106, 110 patb LR LR R PR LR LR LR L P L PR PR RTRE 8
Kobourov . ... 35.37 periodicorder .......... ... oL 64
Koutsoupias 91’ 93 piecemeal-condition ............ ... ... .. ... 30
P T 110 Fledge ..o 44
Kumar ........... .. ... ... 35,37 Polygon
KUISAWE -+ oo 30, 111 MOMOONE ... 7
rectilinear ............ ... .. i, 97
L
Q
Li-metric ........ ... 101
Lo-MEtriC « oo oo 101 QUEUE ..ttt 19
Langetepe ................. 5,18, 21, 49, 88, 93
LAYET v oo 5 R
layer OSSR 27 Rechte Beke . .vvooveee i 105
Leave-Point ... 52 LeCHINGAr « .o oo 97
Leave-Points ... A0 LOCUITENCE . 'vv oo 66
e o 19 Rimon “““““““““““““““““ 27’ 29
L?ft-Hand-Rule """"""""""" 10-13, 44 Rivest ..o 30
Linke Ecke ... 105 Roll-Out ..o 100
JOSE-COW .« v ve et e 62 RoverBug ““““““““““““““““““ 52
LowerBound .............. ... ... ......... 9
lowerbound ...................... 8,54,80,82 ¢
Lubiw ....... ... 97, 104
Lumelsky ............cc..ccooiu... 52,53,55,58 Sankaranarayanan ....................... 52, 56
Schuierer .......................... 30, 88, 111
M SearchGames ..............cciiiiiniii... 62
M 106 searchpath ....... ... . ... ... ... ... 90

2 T .

) searchratio ........... ... i, 90
AM/I‘?‘;Tha“e“‘met“C """"""""""""" 12(1) SEACHING o+ ev oo 43, 52

TlIOS oot .

. searching ............. ... ... 61
M1tchtell """""""""""""" 30,97, lgj searchingdepth ............................. 62
MONOLONE . .\ttt t et e iiee e

Semrau ........ . 88
m-ray-search ... 63 Shannon ............ .. ... . i 3
N Shortest Path Tree ......................... 105

Shortest Watchman Route ................... 97
NAITOW PASSAZES + v v oevvvee e eeeiieeeennnnnns 20 Singh ... 30
Navigation ...........coviuiiiiiinnn... 43,52 Sleator ...........coiiiiiiii i 5
NAvVIgation .............eeiiiiiiineeennnnn.. 61 SmartDFS ...... ... ... . .. 13, 14
NP-hard ........ ... 111 spanningtree ..............cooeiiineennn... 23



121

INDEX

Spanning-Tree-Covering .................... 23
split-cell ........... i 14
Stepanov ................ .. ...... 52, 53, 55,58
SIIEEL ettt ettt e e 79
street polygon . .......... i 79
sub-cells ... 23
Sutherland ............... ... ... .. ... ..., 3
Szwarcfiter ... 8
T

Tarjan ... 5
tether strategy ............ooiiiiiiiiii.., 31
toOl L 23
touch SensSor ... 8
Touring Polygon Problem .................. 103
triangulation ............ ..., 100
Trppen .........coooueiiii i 93
U

unimodal ......... ... ... 63
A\

vertex search .......... .. ... oot 90
Vidyasagar ................coiiiiiiiiii.. 56
visibility polygon ....................... 61, 61
visible ... 61
W

Wave propagation .................c..eeinnn. 19
weakly visible ........ ... ool 79
WIIKES ..o 40
WOrK Space ........o.oiiiiiiiii i 46
Y

D 1010) 11007 1 O 97

Yannakakis ............ ... ... . . ... ... 91, 93



122 INDEX




