
Online Motion Planning MA-INF 1314
Graph-Exploration

Elmar Langetepe

University of Bonn

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 1

Repetition!

• Categories: Algorithms, Geometric Algorithms

• Difference: Online/Offline, Example SWR!

• Correctness, performance, struktural properties, proofs!

• Different models: grid-world/full visionl

• Labyrinth, Labyrinth with grid-structure!

• Shannon: Labyrinth with grid-structure 5× 5

• Simple label algorithm

• Correctness: Formal proof

• Efficiency: Competitive Analysis!

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 2

Competitive analysis, competitive ratio

Definition Let Π be a problem class and S be a strategy, that solves

any instance P ∈ Π.

Let KS(P) be the cost of S for solving P .

Let KOPT(P) be the cost of the optimal solution for P .

The strategy S is denoted to be c–competitive, if there are fixed

constants c, α > 0, so that for all P ∈ Π

KS(P) ≤ c ·KOPT(P) + α

holds.

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 3

Rep.: Efficient Algorithm Graph-Exploration

• Explore a graph, visit all edges (and vertices)

• Vertex: All outgoing edges are visible

• Visited edges are visible

• Strategy: Online-DFS for edges, visits any edge twice

Theorem: Exploring an unknown graph requires roughly twice as

many edge visits than the optimal exploration route for the known

graph. DFS requires no more that twice as many edges.

Formal proof! Second part is already clear! Lower bound by

worst-case adversary strategy

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 4

Graphexploration, Edge visits, Adversary

Adversary: 2− δ worse than the optimum

corridor, agent from s has explored l vertices

s

l

Now bifurcation at s′

l1

l

s′

s

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 5

and so on · · ·

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 6

Exploration simple grid polygons

• Formal definition, Environment and Agent

s ?
?

?
?s

Def. 1.8:

• cell c Tupel (x, y) ∈ IIN2.

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 7

• Cells c1 = (x1, y1), c2 = (x2, y2) are adjacent,

:⇔ |x1 − x2|+ |y1 − y2| = 1. For any cell c there are 4 adjacent

cells.

• Two cells c1 = (x1, y1), c2 = (x2, y2), c1 6= c2 are diagonally

adjacent, :⇔ |x1 − x2| ≤ 1 ∧ |y1 − y2| ≤ 1. For any cell, 8 cells

are diagonally adjacent.

• Path π(s, t) from s to t is a sequence s = c1, . . . , cn = t so that ci
and ci+1 are adjacent.

• Gridpolygon P , Set of path-connectes cells, i.e.

∀ci, cj ∈ P : ∃ path π(ci, cj), that runs in P .

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 8

Gridpolygons

• Similar to Graph-exploration? Compare DFS, OPT!

• Gridpolygons: DFS for vertices, 2(C − 1) steps!

• Lower Bound 2? Yes, but gridpolygon with holes

• Simple gridpolygons (without holes): Lower bound/strategy

s

l

l′′ l′ s

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 9

Simple gridpolygons

• Gridpolygons without holes

• Simple improvement vs. DFS

• Example!

DFS

s s s

Verbesserung Optimal

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 10

Simple gridpolygons: Lower bound!

Theorem: Any strategy for the exploration of simple gridpolygons

with C cells requires at least 7
6 C number of steps.

Proof: By adversary strategy

Not better than: 7
6 competitive

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 11

Simple gridpolygons: Lower bound!
s

s

ssss

(ii) (iii)

(vii)(vi)(v)(iv)

(i)

s

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 12

Simple gridpolygons: Improve DFS!

• Fleshy Environments: Better than 2?

• Visit only the vertices!

• Dependency from the boundary edges, E?

• Smart DFS!

• 1. Number of steps: C + 1
2E − 3

• 2. 4
3 kompetitiv

DFS

s s s

Verbesserung Optimal

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 13

Formal description: DFS

DFS:

Choose Dir dir, so that reverse(dir) is boundary cell;
ExploreCell(dir);

ExploreCell(dir):

Left-Hand-Rule DFS:
ExploreStep(ccw(dir));
ExploreStep(dir);
ExploreStep(cw(dir));

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 14

Formal description: DFS

ExploreStep(dir):

if unexplored(dir) then
move(dir);
ExploreCell(dir);
move(reverse(dir));

end if

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 15

First Improvement for DFS

First idea: : Move along the shortest path to the next free cell!

verbesserter DFS

sc2

c1

DFS

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 16

Smart DFS: 1. Improvement

DFS:

Choose Dir dir, so that reverse(dir) is boundary cell;
ExploreCell(dir);
Move along the shortest path to the start;

ExploreCell(dir):

base := aktuelle Position;
Left-Hand-Rule DFS:
ExploreStep(base, ccw(dir));
ExploreStep(base, dir);
ExploreStep(base, cw(dir));

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 17

Smart DFS: 1. Improvement

ExploreStep(base, dir):

if unexplored(base, dir) then
Move along the shortest path to base

using all visited cells;
move(dir);
ExploreCell(dir);

end if

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 18

Smart DFS: 2.Improvement!

Second idea: Split into different areas happens: Work on the part

where the starting point is not inside! Farther away!

c2 s

c1

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 19

Definition Offset and Layer

• l-Layer and l-Offset of P

defined recursively

• Cells along the boundary of P :

1-Layer

• P ′ after removing

1-Layers: 1-Offset

• Cells along the boundary of the

1-Offsets:

2-Layer

• 1-Offset after removing of

2-Layers: 2-Offset

• Go on recursively

l

l

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 20

l-Offset

• Need not be connected!

• Also defined for general gridpolygons

• Independent from any strategy

l

l

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 21

Smart DFS: 2. Improvement!

• Split into different part! When does it happen?
• Splitcell occurs in Layer l: How to proceed?
• Where is the starting point?

(I) Component Ki fully enclosed by Layer l.
(II) Component Ki not visited by Layer l

(III) Component Ki partially enclosed by Layer l.
• Visit component of type (III) last! Starting point!

Layer 2

Layer 1

(i) (ii)

c

(III)(III)

(II) (I)

c

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 22

Smart DFS: 2. Improvement!

• Special cases: There is no component of Typ (III)

• One step: Right Hand Rule!

(ii)(i)

1 1

111 1

1

1

s

11

1

1

11

1

1

1

1 2

2

2

2

2

22

2

2 3

s

c

c

2

2

2

2

1

1 1

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 23

Smart DFS: 2. Improvement!
ExploreCell(dir):

Mark current cell with the layer number;
base := current position;
if not SplitCell(base) then

Left-Hand-Rule:
ExploreStep(base, ccw(dir));
ExploreStep(base, dir);
ExploreStep(base, cw(dir));

else Choose different preference:
Calculate the type of components by the layer numbers of cells
if There is no component of type (III) then

Do one step by Right-Hand-Rule;
else

Visit the component of type (III) zuletzt.
end if

end if

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 24

Smart DFS

• Strategy is well-defined!

• Next: Analysis of the strategy!

• Number of steps: C + 1
2E − 3

• Attention: This is not a komp. Ratio!

• Better than DFS in fleshy environments, case sensitive

• Analysis over the split cells, recursion!

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 25

Edgelemma!

Lemma: The l-Offset of a simple gridpolygon P has at least 8l

edges less than P .

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 26

8l edges less

Proof: Surround the l-Offset in CW

order

• Assume: Remains connected

• Left curve: l-Offset wins

2l edges.

• Right curve: l-Offset looses

2l edges.

• Altogether 4 more right curves than

left curves (Turning angle 2π!)

• Disconnection improves the result

• l-Offset has at least 8l edges less

l

l

2l Kanten dazu

2l Kanten weniger

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 27

Distancelemma!

Lemma: The shorest path between to cells s and t of a simple

gridpolygon P with E(P)edges has at most 1
2E(P)− 2 steps.

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 28

Distancelemma! π ≤ 1
2E(P)− 2

Beweis:

• s and t in 1-Layer, otherwise

move them to the boundary

• Along the boundary (left) πL,

(right) πR
• Roundtrip: Count edges!

• Roundtrip: At least

4 edges more than

cells/steps

• Let π be shortest patp

• |πL|+ |πR| = E(P)− 4 ⇒
π ≤ 1

2E(P)− 2

πR

t

πL
s

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 29

Decomposition of P at split-cell

• Decomposition Rectangle Q: 2q + 1

• Cases: K2 of type I) (q = l) or vom type II) (q = l − 1)

• P2, such that K2 ∪ {c} is the q-Offset of P2

• P1 := ((P\P2) ∪Q) ∩ P Intersection with P for the movements

Layer 2

Layer 1

QQ

c

P2

Q

Q

P2

P1
P1

c

(I)K2(II)

(III)

cc

K2

(III)

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 30

Decomposition of P

• Decomposition Rectangle Q: 2q + 1

• P2, such that K2 ∪ {c} is the q-Offset of P2

• P1 := ((P\P2) ∪Q) ∩ P
• Path remains guilty!

c

s

K1
c

Q

K2 K2

K1
Q

c

s′

s

P1

P2

Q

P

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 31

Analysis: Visity beyond the cells

• Any cell is visited once

• Number of steps S(P): Visit cells plus additional visits

• S(P) := C(P) + excess(P)

• Calculate excess(P)

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 32

Excesslemma

Lemma: P gridpolygon and c a split-cell, such that P splits into K1

and K2 (for the first time). Let K2 be the component, that is visited

first. We have: excess(P) ≤ excess(P1) + excess(K2 ∪ {c}) + 1.

c

s

K1
c

Q

K2 K2

K1
Q

c

s′

s

P1

P2

Q

P

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 33

excess(P) ≤ excess(P1) + excess(K2 ∪ {c}) + 1.

• Explore K2 ∪ {c} after c by SmartDFS, return to c

• Gives: max. excess(K2 ∪ {c}) since P2\(K2 ∪ {c}) optimal

• c twice: plus 1

• Then move to P1: Maximal excess(P1)

c

s

K1
c

Q

K2 K2

K1
Q

c

s′

s

P1

P2

Q

P

Online Motion Planning Graph-Exploration 14.4.2016 c©Elmar Langetepe SS ’16 34

