Institut für Informatik
Prof. Dr. Heiko Röglin
Dr. Melanie Schmidt

Problem Set 0

Problem 1

Let $(\Omega, \operatorname{Pr})$ be a discrete probability space and let $A, B \in 2^{\Omega}$ be events that are independent. Show that \bar{A} and \bar{B} are independent.

Problem 2

We flip a fair coin n times. We are interested in sequences tosses that all come up heads. For simplicity, let n be a power of two.

- Show that the probability that we see a sequence of $1+\log n$ heads is at most $1 / 2$.
- Show that the probability to see a sequence of more than $1+\log n$ heads decreases exponentially. To do that, find an upper bound on the probability for a sequence with $k+\log n$ heads that decreases exponentially in k.

Problem 3

In this task, we want to cut a graph $G=(V, E)$ into r pieces instead of cutting it into two pieces as in the lecture. We say that r disjoint subsets V_{1}, \ldots, V_{r} with $V=\cup_{i=1}^{r} V_{i}$ are an r-cut of G. We pay for all edges between these subsets, our cost is: $\frac{1}{2}\left(\left|\delta\left(V_{1}\right)\right|+\left|\delta\left(V_{2}\right)\right|+\ldots+\left|\delta\left(V_{r}\right)\right|\right)$. We want to find an r-cut with minimum cost.

Generalize Karger's contract algorithm such that it finds an r-cut and give a lower bound on the probability that it outputs a minimum r-cut.

