Institut für Informatik Prof. Dr. Heiko Röglin Dr. Melanie Schmidt

Randomized Algorithms and Probabilistic Analysis Summer 2016

Problem Set 0

Problem 1

Let (Ω, \Pr) be a discrete probability space and let $A, B \in 2^{\Omega}$ be events that are independent. Show that \overline{A} and \overline{B} are independent.

Problem 2

We flip a fair coin n times. We are interested in sequences tosses that all come up heads. For simplicity, let n be a power of two.

- Show that the probability that we see a sequence of $1 + \log n$ heads is at most 1/2.
- Show that the probability to see a sequence of more than $1 + \log n$ heads decreases exponentially. To do that, find an upper bound on the probability for a sequence with $k + \log n$ heads that decreases exponentially in k.

Problem 3

In this task, we want to cut a graph G = (V, E) into r pieces instead of cutting it into two pieces as in the lecture. We say that r disjoint subsets V_1, \ldots, V_r with $V = \bigcup_{i=1}^r V_i$ are an r-cut of G. We pay for all edges between these subsets, our cost is: $\frac{1}{2}(|\delta(V_1)| + |\delta(V_2)| + \ldots + |\delta(V_r)|)$. We want to find an r-cut with minimum cost.

Generalize Karger's contract algorithm such that it finds an r-cut and give a lower bound on the probability that it outputs a minimum r-cut.