Institut für Informatik Prof. Dr. Heiko Röglin Dr. Melanie Schmidt

Problem Set 6

Problem 1

Give examples for the following situations or reason that they cannot occur.

1. Draw paths $P(i)$ and $P(j)$ and give a value t such that $\operatorname{off} \operatorname{set}(t, j)=2|P(i)|$.
2. Draw a path $P(i)$ and possibly other intersecting paths and give a value t such that $\operatorname{offset}(t, i)=2|P(i)|$.
3. Draw a path $P(i)$ with $|P(i)|=4$ and a path $P(j)$ and give a value L such that $\operatorname{lucky}(L+1, L)=\emptyset, \operatorname{lucky}(t, L)=\{j\}$ for j at all times $t \in\{L+2, \ldots,|P(i)|+L\}$.
4. Draw a path $P(i)$ and possibly other intersecting paths and give a value for L such that lucky $(t, L) \neq \operatorname{lucky}\left(t^{\prime}, L\right)$ for all $t, t^{\prime} \in\{L+1, \ldots,|P(i)|+L\}$ with $t \neq t^{\prime}$.
5. Draw paths $P(i)$ and $P(j)$ and give values L, t, t^{\prime} with $t<t^{\prime}$ and $t^{\prime} \leq|P(i)|+L-1$ such that $\operatorname{lucky}(t, L) \neq \emptyset$ and $\operatorname{lucky}\left(t^{\prime}, L\right)=\emptyset$.
6. Draw paths $P(i), P(j)$ and possibly other paths and give values t and L such that $\operatorname{lucky}(t, L)=\{j\}, \operatorname{lucky}(t+1, L)=\emptyset$ and $\operatorname{lucky}(t+2, L)=\{j\}$.

Problem 2

Assume that we throw $m=\left\lfloor 5 n \log _{2} n\right\rfloor$ balls into n baskets. For each ball, the basket is chosen uniformly at random. Let X_{i} be the number of balls in basket i for $i \in\{1, \ldots, n\}$, and set $X=\max _{i=1, \ldots, n} X_{i}$. Show that

$$
\operatorname{Pr}\left(X \geq 30 \log _{2} n\right) \leq \frac{1}{n^{c}}
$$

holds for a suitable constant $c>0$.

Problem 3

Show that the recurrence

$$
h_{0}=1+h_{1}, \quad h_{n}=0, \quad \forall j \in\{0, \ldots, n-1\}: h_{j} \leq 1+\frac{2}{3} h_{j-1}+\frac{1}{3} h_{j+1}
$$

implies that $h_{j} \leq 2^{n+2}-2^{j+2}-3(n-j)$ for all $j \in\{0, \ldots, n\}$. Hint: First show by induction that for all $j \in\{0, \ldots, n-1\}, h_{j} \leq h_{j+1}+2^{j+2}-3$ holds.
(This task completes the proof of Lemma 4.3).

