Institut für Informatik Prof. Dr. Heiko Röglin Dr. Melanie Schmidt

Problem Set 7

Problem 1

Show that for all $n \geq k>0$, it holds that

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{n \cdot e}{k}\right)^{k}
$$

Hint: Recall Stirling's formula from the lecture. Additionally, it is helpful to write the binomial coefficient as

$$
\binom{n}{k}=\frac{n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-k+1)}{k \cdot(k-1) \cdot(k-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1}
$$

Problem 2

We consider 3-SAT and the situation that the input formula is satisfiable, let a^{*} be an arbitrary satisfying assignment. Assume that n is a multiple of two.
Based on the lower bound on q_{i} from the lecture, prove the easier to obtain bound $\Theta\left(\sqrt{2}^{n}\right.$. $\operatorname{poly}(n, 1 / \delta)$) on the number of necessary iterations to find a satisfying assignment with probability $1-\delta$. Proceed by completing the following steps:

1. Let a be an assignment chosen uniformly at random. Let r be the probability that a agrees with a^{*} in at least $\frac{n}{2}$ variables. Show that $r \geq 1 / 2$.
2. Give a lower bound for the probability that in an iteration, the algorithm draws an a which agrees with a^{*} in at least $\frac{n}{2}$ variables and then reaches vertex n.
3. Based on 2., give a bound on the necessary number of iterations to find a satisfying assignment with probability $1-\delta$.

Problem 3

Another easier to show upper bound for the number of iterations is of $\Theta\left((1.5)^{n} \cdot \operatorname{poly}(n, 1 / \delta)\right)$. To show this bound, one uses a simpler lower bound for q_{i} : For each, $i \in\{0, \ldots, n\}$ the probability to reach n from $n-i$ is at least $(1 / 3)^{i}$ since the walk could go to n right away. Thus, the success probability of one iteration is at least

$$
\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i} \cdot \frac{1}{3^{i}} \cdot 1^{n-i}=\left(\frac{1}{2}\right)^{n} \cdot\left(1+\frac{1}{3}\right)^{n}=\left(\frac{4}{2 \cdot 3}\right)^{n}=\left(\frac{2}{3}\right)^{n}
$$

yielding the above running time bound. Extend this result to a corresponding result for k-SAT. Is the resulting bound better than iterating through all possible assignments?

