
20 1. Introduction to Probability Theory

Theorem 1.17. The algorithm FastCut always outputs a cut. With a probability of
at least Ω(1/ log n), this cut is a minimum cut.

Proof. As before, we fix an optimal solution S∗ and let C∗ := δ(S∗) be the edges that
are cut by S∗. We show a lower bound on the probability that the FastCut algorithm
does not output S∗.

The algorithm is recursive. Thus, the success probability follows a recurrence relation.
Assume that we are at a call of FastCut on level i of the recursion, and C∗ is still intact
(no edge from C∗ has been contracted). By level i of the recursion we mean all call
where the input graph has already been reduced i times. The first call FastCut(G)
is (the only call) on level 0.

FastCut(G)n nodes level 0

FastCut(G)

FastCut(G)

FC(G)n√
2i nodes

x

FC(G)

FastCut(G)

FC(G)FC(G)

FastCut(G)

FastCut(G)

FC(G)FC(G)

FastCut(G)

FC(G) FC(G) level i

We want to analyze the probability that a FastCut call on level i outputs an optimal
solution, under the assumption that this is still possible. We let P (i) be a lower bound
on the probability that a call on level i outputs a minimum cut under the assumption
that C∗ is in its input graph.

FastCut computes a graph H1 by calling Contract(G, t) with t = 1 + dn/
√

2e. We
already argued that this call contracts no edge from C∗ with probability at least 1/2
because of the choice of t. Later, it recursively computes a solution S1 based on H1.
The probability that H1 still contains C∗ and then the recursive call is successful (thus,
S1 = S∗) is at least P (i + 1)/2 because these two events are independent. The same
is true for the probability that S2 is S∗. The probability that both S1 and S2 fail to
be S∗ is now bounded above by (1− P (i+ 1)/2)2, which means that

P (i) ≥ 1−
(

1− P (i+ 1)
2

)2

.

It might be a bit unintuitive that the recurrence goes ‘up’. To change this, let h be
the maximum level, i.e. the level where all calls are executed without any further
recursion. We redefine P (i) as the probability that a call on level h − i outputs
C∗ under the assumption that C∗ is in its input graph. Then P (0) = 1 because of
the assumption that C∗ is still a feasible solution and because the problem is solved
optimally. Furthermore, by our above argumentation,

P (i) ≥ 1−
(

1− P (i− 1)
2

)2

1.3. More Applications 21

for i ∈ {1, . . . , h}.

We show that P (i) ≥ 1/(i + 1) for all i ∈ {0, . . . , h} by induction. The base case
is i = 0, and the statement holds in this case because P (i) = 1 = 1/(0 + 1). For
i ∈ {1, . . . , h} we get

P (i) ≥1−
(

1− P (i− 1)
2

)2

≥ 1−
(

1− 1
2i

)2

= 1−
(

2i− 1
2i

)2

=4i2
4i2 −

4i2 − 4i+ 1
4i2 = 4i− 1

4i2 = 1
i
− 1

4i2
i≥1
≥ 1

i
− 1
i(i+ 1) = 1

i+ 1 .

The success probability of the first FastCut call is P (h). On level i, the calls get input
graphs with n/

√
2i nodes. Thus, on level dlog√2 n/6e, the number of nodes is at most

n
√

2dlog√
2 n/6e

≤ n

n/6 = 6.

We conclude that h ∈ O(log n) which proves the theorem.

As before, we can additionally increase the success probability by independent repe-
titions. For a constant success probability, we need Θ(log n) repetitions, yielding an
overall running time of O(n2 log2 n).

1.3.2 Reservoir Sampling

We now do an excursion to the data stream model to see a somewhat different setting.
Data streams frequently occur in today’s algorithmic challenges, when monitoring
internet traffic or the output of a sensor, the stock market or another source that
never stops to produce more and more information. Data streams cannot be stored
(completely), and the length of the stream is unknown (or thought of as being infinite).
In particular, this means that algorithm working with a data stream as the input
data have no random access to the data. They can read the data once, store some
information on it, but they cannot go back and forth.

There are many models for data stream algorithms. A detailed introduction and
overview on different models is for example given in [4]. We do worst-case analysis
in this part of the lecture, thus we also assume a worst-case scenario here: The data
arrives in an arbitrary order, possibly the worst order for the algorithm we design. In
this section, we consider the following simple data stream model: The stream consists
of distinct integers

a1, a2, a3, . . .

in arbitrary order and we do not know the length of the stream (it might be infinite).

22 1. Introduction to Probability Theory

Sampling an element from a stream. In the data stream model, easy tasks can
be a challenge. In this section, we want to solve the basic problem of choosing elements
uniformly at random from the stream (choosing elements uniformly at random from
some ground set is also called ‘sampling’). More precisely, our first task is to design
an algorithm that accomplishes the following: It always stores one number s from the
stream. After seeing the ith element ai, the probability that s is equal to aj should be
1/i for all j ∈ {1, . . . , i}. It is a bit surprising that we can actually achieve this goal,
and in a fairly straightforward manner. Our algorithm does the following:

ReservoirSampling

1. After seeing a1, set s = a1.
2. When seeing ai:
3. With probability 1/i, replace s by ai.
4. Else (thus, with probability (i− 1)/i), do nothing.

Lemma 1.18. ReservoirSampling satisfies for any i ≥ 1: After seeing and process-
ing ai, it holds that

Pr(s = aj) = 1
i
∀j ∈ {1, . . . , i}.

Proof. The event ‘s = aj’ occurs if aj is chosen to replace s after seeing aj and it is
never replaced by the i−j subsequent elements (i.e. the algorithm chose to do nothing
i− j times). Thus,

Pr(s = aj) = 1
j
· j

j + 1 ·
j + 1
j + 2 ·

j + 2
j + 3 · . . . ·

i− 2
i− 1 ·

i− 1
i

= 1
i

which proves the lemma.

Sampling more than one element. Our second task is to sample s elements from
the stream, where s can be greater than one. First we observe that this reduces to our
previous algorithm if we allow that an element is sampled multiple times. In order to
get a set S with s elements from the stream where multiples are allows, we simply run
s copies of our above algorithm. Then every set S with |S| = s has equal probability
to be the current set after seeing ai, namely probability 1/is.

The challenge of this paragraph is to always have a set S of distinct elements which
is chosen uniformly at random / sampled from the set of all possible subsets of
{a1, . . . , ai}. The algorithm that achieves this is the algorithm R published by Vit-
ter in [9]. We still call the algorithm ReservoirSampling (for s elements):

1.3. More Applications 23

ReservoirSampling

1. After seeing the first s elements, set S = {a1, a2, . . . , as}.
2. When seeing ai:
3. With probability i−s

i
, do nothing.

4. Else (thus, with probability s
i
):

5. Choose an item x uniformly at random from S.
6. Replace x in S by ai.

We show that every set with s elements has equal probability to be S at any point in
the stream. Observe that there are

(
i
t

)
subsets of {a1, . . . , ai}. Thus, after seeing ai,

the probability for any specific subset should be 1/
(
i
t

)
.

Theorem 1.19. ReservoirSampling (for s elements) satisfies for any i ≥ s: After
seeing and processing ai, it holds that

Pr(S = T) = 1(
i
t

)
for every T ⊆ {a1, . . . , ai} with |T | = s.

Proof. We show the statement by induction over i.

i = s: Since the algorithm chooses the first s elements as the initial set S, we have
Pr(S = T) = 1 = 1/

(
1
1

)
for T = {a1, . . . , as}, the only possible subset of {a1, . . . , as}

that satisfies |T | = s.

i > s: We want to show Pr(S = T) = 1/
(
i
t

)
for all possible sets, so let T ⊂ {a1, . . . , ai}

be an arbitrary fixed set. We let S ′ be the set that the algorithm had after seeing ai−1
and before seeing ai. It then processed ai, maybe replaced it by a uniformly chosen
element x and the current set is set S. We analyze the probability that S = T by
distinguishing two cases.

a) ai 6∈ T .
If ai is not in T , then the algorithm can only have S = T if it already had T after
seeing ai−1. Thus let A be the event that S ′ = T . By the induction hypothesis,
we know that

Pr(A) = 1(
i−1
s

) .
If A occurred, it might still be that S 6= T if the algorithm chose to replace
an item. Thus let B be the event that the algorithm replaces an item. By the
algorithm definition, it is

Pr(B) = s

i
.

We observe that S = T occurs exactly if A occurs and B does not occur. Since
the events A and B̄ are independent, we can conclude that

Pr(S = T) = Pr(A ∩ B̄) = Pr(A) ·Pr(B̄)

24 1. Introduction to Probability Theory

= 1(
i−1
s

) · i− s
i

= s!(i− s− 1)!
(i− 1)! · i− s

i
= s!(i− s)!

i! = 1(
i
s

) .
b) ai ∈ T .

In this case, we get T if we had all elements except ai in S ′ already. Thus, let
R = T\{ai} be these elements and let C be the event that R ⊂ S ′. Notice that
there are (i− 1)− (s− 1) = i− s subsets of {a1, . . . , ai−1} with s− 1 elements
that contain R. For each of these subsets, the probability that it is S ′ is 1/

(
i−1
s

)
.

Thus we get that
Pr(C) = i− s(

i−1
s

) .
We again use the event B that the algorithm chose to replace an item by ai, we
recall that Pr(B) = s/i. Finally, we need one event more. Let D be the event
that C∩B already occurred and additionally, the item x is the one item in T\R.
Thus, Pr(S = T) = Pr(D). Observe that the probability Pr(D | B ∩C) is 1/s:
If we already know that an element is replaced, and we also already know that
C occurred, then the probability that the replaced item is one specific item is
just 1/|S| = 1/s. We can now conclude that

Pr(S = T) = Pr(B ∩ C ∩D) = Pr(B ∩ C) ·Pr(D | B ∩ C)
= Pr(B) ·Pr(C) ·Pr(D | B ∩ C)

= s

i
· i− s(

i−1
s

) · 1
s

= 1
i
· i− s(

i−1
s

)
= 1(

i
s

) .
For the last step, observe that we computed the same term above as well. We
have shown that the theorem is true.

	I Randomized Algorithms
	Introduction to Probability Theory
	More Applications
	Reservoir Sampling

