Online Motion Planning MA-INF 1314 Bug-Algorithm

Elmar Langetepe
University of Bonn

Repetition: Pledge Algorithm with sensor errors

Pledge-like curve!
Def. \mathcal{K} class of curves in $\mathcal{C}_{\text {frei }} \cup \mathcal{C}_{\text {halb }}$, with the following conditions:

1. Parameterized curve with turn-angles and position:
$C(t)=(P(t), \varphi(t))$ mit $P(t)=(X(t), Y(t))$
2. Curve surrounds obstacel by Left-Hand-Rule
3. Leavs point is a vertex of an obstacle
4. $\mathcal{C}_{\text {free-condition holds: }}$
$\forall t_{1}, t_{2} \in C: P\left(t_{1}\right), P\left(t_{2}\right) \in \mathcal{C}_{\text {free }} \Rightarrow\left|\varphi\left(t_{1}\right)-\varphi\left(t_{2}\right)\right|<\pi$
5. $\mathcal{C}_{\text {half }}$-condition holds:
$\forall h_{i}, t \in C: P(t)=P\left(h_{i}\right) \Rightarrow \varphi(t)-\varphi\left(h_{i}\right)<\pi$

Rep.: Proof correctness

- Lemma Curves from \mathcal{K} do not self-intersect.II
- Lemma Curves from \mathcal{K} hit any edge once.I
- Lemma For any curve from \mathcal{K} : Obstacle will no longer be left, then the curve is enclosed by the obstacle.l
- Theorem Curves from \mathcal{K} escape, if this is possible.ll

Rep.: Applications of the model

Corollary Compass with deviation maximal $\frac{\pi}{2}$ is sufficient for escaping from a labyrinth.

Corollary Axis-parallel scene, hold the direction in the range $\left(-\frac{\pi}{2},+\frac{\pi}{2}\right)$ and distinguish between horizontal and vertical. Escape!

Rep: Pseudo orthogonal

- Small devaitions at the vertices! From global coordinates!
- 1. Condition: Numbers convex vert. = reflex vert. + 4 ॥
- Small deviations!
- $\operatorname{div}(e): e=(v, w)$ smallest deviation from horizontal/vertical line passing durch v und $w l$
- $\operatorname{div}(P):=\max _{e \in P} \operatorname{div}(e) \leq \delta$, Def.: δ-pseudo orthogonal scenel

(i)

(ii)

Rep: δ-pseudo orthogonal

Corollary δ-pseudo-orthogonal scene P. Measure angles with precision ρ s.th. $\delta+\rho<\frac{\pi}{4}$. Deviation in the free space always smaller than $\frac{\pi}{4}-2 \delta-\rho$ from global starting direction. Escape from a labyrinth is guaranteed

1. Distinguish reflex/convex corners: Counting the turns! \|
2. Max. global deviation of starting direction: Intervall $\pi \|$
3. Distinguish: Horizontal/Verticall

Rep.: δ-pseudo orthogonal scene

- Precision ρ with $\delta+\rho<\frac{\pi}{4}$
- Free-space max. deviation $\frac{\pi}{4}-2 \delta-\rho \|$
- 1. Distinguish reflex/convex corners: Worst-casel

convex vertex

reflex vertex

Szene δ-pseudo orthogonal

- Precision ρ with $\delta+\rho<\frac{\pi}{4}$
- Free-space max. deviation $\frac{\pi}{4}-2 \delta-\rho \|$
- 3. Horizontal/vertical: Worst-casel

(i)

(ii)

(iii)

Szene δ-pseudo-orthogonal

- Precision ρ with $\delta+\rho<\frac{\pi}{4}$
- Free-Space deviation $\frac{\pi}{4}-2 \delta-\rho$ l
- 2. Max. global deviation of starting direction: Intervall $\pi \|$
- Leave in $[-\delta, \delta]$
- Deviation for the next hit: $\frac{\pi}{4}-2 \delta-\rho \|$

Find a target point

- Searching for a given goal: Navigation
- Polygonal environment: Finite number of polygons॥
- Touch sensor: Hand-Rules
- Start s, target t, coordinates are given
- Finite storage: I.e. Own coordinates
- BUG Algorithms: Sojournerl

Notations

- $|p q|$ distance between p and $q \|$
- $D:=|s t|$ distance from start to goall
- Π_{S} path of strategy S from start to goall
- $\left|\Pi_{S}\right|$ length of the path $\Pi_{S} \|$
- UP_{i} perimeter of obstacle P_{i}.ll
- Actions:

1. Move into direction of the target
2. Follow the wall I

- Leave-Points l_{i}, Hit-Points h_{i} II

BUG1 strategy: Lumelsky/Stepanov

BUG1 strategy: Lumelsky/Stepanov

0. $l_{0}:=s, i:=1$
1. From l_{i-1} move into target direction, until
(a) Goal is reached: Stop!
(b) An obstacle is met at h_{i}.
2. Surround the obstacle O in cw order - continuously calculate and store the point l_{i} on O closest to t-, until
(a) Goal is reached: Stop!
(b) h_{i} is visited again!
3. Move along the shortest path along O to l_{i}.
4. Increment i, GOTO 1.

Correctness BUG1 strategy

Theorem The strategy BUG1 finds a path from s to t, if such a path exists.I
Proof:I

- Sequence of Hit- and Leave-Points h_{i}, l_{i}
- $|s t| \geq\left|h_{1} t\right| \geq\left|l_{1} t\right| \ldots \geq\left|h_{k} t\right| \geq\left|l_{k} t\right| \mid$

Theorem Correctness BUG1 strategy

- Point with smallest distance to t : Leave-Point $l_{i} \|$
- No free movement to $t \Rightarrow$ enclosed
- $l_{i} \neq l_{j}$, new obstacle!
- Finitely many obstacles \Rightarrow correctness

Path length BUG1 strategy

Theorem Let $\Pi_{\text {Bug } 1}$ be the path from s to t, calculated by the BUG1-strategy. We have: $\left|\Pi_{\text {Bug } 1}\right| \leq D+\frac{3}{2} \sum_{i} \mathrm{UP}_{\mathrm{i}}$. $\|$ Proof:I

- Subdivision: Free space path, surrounding $\|$
- Surrounding, then shortest path to l_{i} I
- $\frac{3}{2} \sum \mathrm{UP}_{\mathrm{i}} \mathrm{I}$
- Finally: Path D^{\prime} between the obstaclesll

$\underset{\text { Theorem }}{ }\left|\prod_{\text {Rug1 }}\right| \leq D+\frac{3}{2} \sum_{i} \mathrm{UP}_{\mathrm{i}}$.

$$
D^{\prime}=\left|s h_{1}\right|+\left|\ell_{1} h_{2}\right|+\ldots+\left|\ell_{k-1} h_{k}\right|+\left|\ell_{k} t\right|
$$

$$
\| \leq\left|s h_{1}\right|+\left|\ell_{1} h_{2}\right|+\ldots+\left|\ell_{k-1} h_{k}\right|+\left|h_{k} t\right|
$$

$$
\|=\left|s h_{1}\right|+\left|\ell_{1} h_{2}\right|+\ldots+\left|\ell_{k-1} t\right|
$$

$$
\leq\left|s h_{1}\right|+\left|\ell_{1} t\right| \llbracket \leq\left|s h_{1}\right|+\left|h_{1} t\right|=|s t|=D \|
$$

Lower bound?

- Show: Bug1 is $\frac{3}{2}$-competitivell
- Surround the obstacles along the pathl
- Corollary Bug1 is $\frac{3}{2}$-competitivell
- Adversary strategy for the modell
- Actions:

1. Move into directionl
2. Follow the wall I

- Leave-Points l_{i}, Hit-Points h_{i}

Lower bound

Theorem For any strategy S (due to the action-model), and for any $K>0$, there exist a strategy with arbitrary $D>0$, sucht that for any $\delta>0:\left|\Pi_{S}\right| \geq K \geq D+\sum \mathrm{UP}_{\mathrm{i}}-\delta$.

Arbitrarily large path!

$$
\left|\Pi_{S}\right| \geq K \geq D+\sum \mathrm{UP}_{\mathrm{i}}-\delta .
$$

- Virtual horse-shoe, Width $2 W$, Thickness $\epsilon \ll \delta$, Length L,
\| Distance D\|
- Virtual gets precise: Touch the wall!
- For any strategy S

$$
\left|\Pi_{S}\right| \geq K \geq D+\sum \mathrm{UP}_{\mathrm{i}}-\delta .
$$

- Idea: $D+W-\sqrt{D^{2}+W^{2}} \leq \delta / 2$ and

$$
L+W-\sqrt{L^{2}+W^{2}} \leq \delta / 2, L, W \text { large enough! }
$$

- $\left|\Pi_{S}\right| \geq \sqrt{L^{2}+W^{2}}+L+\sqrt{D^{2}+W^{2}}$

$$
\geq D+W+L+W-\delta=D+2(L+W)-\delta
$$

(i)

(ii)

(iii)

(iv)

$$
\left|\Pi_{S}\right| \geq K \geq D+\sum \mathrm{UP}_{\mathrm{i}}-\delta
$$

- Problem: Left and right part! Peri. $4(L+W)$
- Inside horse-shoe: $\left|\Pi_{I_{1}}\right| \geq \sum \frac{1}{2} \mathrm{UP}_{i}$ non-overlappingl
- $\left|\Pi_{I_{2}}\right| \geq \sum \mathrm{UP}_{\mathrm{j}}$ overlapping, r_{j} path backl
- Outside horse-shoe: $\left|\Pi_{A}\right| \geq L+C$ with $C=\sqrt{D^{2}+W^{2}}$
- $L_{A_{1}} \geq \sum \frac{1}{2} \mathrm{UP}_{\mathrm{i}}$ for non-overlappingl
- Altogether: $\left|\Pi_{S}\right| \geq \sqrt{D^{2}+W^{2}}+\sum \mathrm{UP}_{\mathrm{i}}-2$ nell
- $n \leq \frac{2 L}{\delta}, \epsilon \leq \delta^{2} /(4 L)$ gives $2 n \epsilon \leq \delta / 2$
- $\left|\Pi_{S}\right| \leq D+W+\sum \mathrm{UP}_{\mathrm{i}}-\delta \boldsymbol{\|}$

$2 W$

BUG2 strategy

Line G passing $s t$, target direction, surround obstacle, shortest curr. distance on G, move to target

BUG2 strategy

0. $l_{0}:=s, j:=1$
1. From l_{j-1} move toward target, until
(a) Goal is reached: Stop!
(b) Obstacle is met at h_{j}.
2. Surround obstacle cw order, until
(a) Goal is reached: Stop!
(b) Line G passing st is visited at $q,|q t|<\left|h_{j} t\right|$ and $\overline{q t}$ locally free for a move $l_{j}:=q, j:=j+1$ and GOTO 1.
(c) h_{j} is reached again, no point q of case b) was found.

Reaching the goal is impossible.

BUG2 strategy: Analysis

- Structural properties
- Correctness and performancell
- Lemma Bug2 visits finitely many obstacles!

Proof, by precondition for the scene!

BUG2 strategy: Property

Lemma Let n_{i} denote the number of intersections between G (line passing $s t$) and the obstacle P_{i}. Any boundary point of P_{i} is visited at most $\frac{n_{i}}{2}$ time.I

- Bug2 defines pairs $\left(h_{j}, l_{j}\right)$ of hit- and leave pointsl
- Jumping cond.: $\left|h_{j} t\right|>\left|l_{j} t\right|>\left|h_{j+1} t\right| . \|$
- Any intersection with P_{i} is only once a leave or a hit point
- Meet current hit point \Rightarrow Stopl

Bug2 visits boundary points max $\frac{n_{i}}{2}$ times

- Pairs $\left(h_{j}, l_{j}\right)$ of hit- leave points
- $\frac{n_{i}}{2}$ pairs $\left(h_{j}, l_{j}\right)$ I
- Only then a surrounding is startedl
- Point on the boundary only $\frac{n_{i}}{2}$ times

BUG2 strategy: Correctness

Corollary Bug2 visits the goal, if this is possible.ll
I

- Finitely many visits, finitely many surroundings!
- Either goal is found or current hit point is visited again
- Current hit point \Rightarrow no free path from a better point on the boundary. Goal is enclosed!!

BUG2 strategy: Performance

Theorem Let $\Pi_{\mathrm{Bug} 2}$ denote the path from s to t designed by BUG2. We have $\left|\Pi_{\mathrm{Bug} 2}\right| \leq D+\sum_{i} \frac{n_{i} \mathrm{UP}}{2}$. Proof:

- Subdivision: Surroundings, Free pathl
- $\sum_{i} \frac{n_{i} \mathrm{UP}_{i}}{2}$ follows from the Lemmal
- Length D^{\prime} between ostacles॥

BUG2 strategy: Performance

- Length D^{\prime} between obstacles
- Analogously BUG1 Theorem $D^{\prime} \leq D \|$
- Altogether:

$$
\left|\Pi_{\mathrm{Bug} 2}\right| \leq D+\sum_{i} \frac{n_{i} \mathrm{UP}_{\mathrm{i}}}{2}
$$

Compare BUG2 and BUG1

- BUG2 not always better, sometimes worse (Exercise)
- Convex polygons: Optimall
- Many further variants!
- Visibility/Local improvements!

Change I

- Bug1 fully surroundsi
- Bug2 avoids, but visits many timesl
- Change make use of old Leave/Hit Points, One order change! I

Pseudocode: Change I

0. $\ell_{0}:=s, i:=1$
1. Move from ℓ_{i-1} along line passing st toward goal, until
(a) Goal is reached: Stop!
(b) Obstacle is met at h_{i}.
2. Surround ostacle cw order, until
(a) Goal is reached: Stop!
(b) Line G passing $s t$ is visited at $q,|q t|<\left|h_{j} t\right|$ and $\overline{q t}$ locally free for a move, $l_{j}:=q, j:=j+1$ and GOTO 1.
(c) A hit- or leave point h_{j} or ℓ_{j} with $j<i$ is met. Move back to h_{i}, use ccw order until (a), (b) oder (d) happens.
(d) h_{j} is reached again, no point q of case b) was found. Reaching the goal is impossible.
