Online Motion Planning MA-INF 1314 Alternative cost measures!

Elmar Langetepe University of Bonn

Rep: Searching for target of a street

Rep: Lower Bound

Theorem No strategy can achieve a path length smaller than

$$\sqrt{2} \times \pi$$
Opt·

Proof:

Detour with ratio $\sqrt{2}$

Rep.: Funnel situation!

- It is sufficient to consider special streets only!
- Combine them piecewise!
- **Def.** A polygon that start with a convex vertex s and consists of two opening convex chains ending at t_{ℓ} and t_r respectively and which are finally connected by a line segment $t_{\ell}t_{r}$ is called a funnel (polygon).

Rep.: Generalized Lower Bound

Lemma For a funnel with opening angle $\phi \leq \pi$ no strategy can guarantee a path length smaller than $K_{\phi} \cdot |Opt|$ where $K_{\phi} := \sqrt{1 + \sin \phi}$. Proof:

Detour at least: $\frac{|\pi_S|}{|\pi_{Ont}|} = \frac{\ell\cos\frac{\phi}{2} + \ell\sin\frac{\phi}{2}}{\ell} = \sqrt{1 + \sin\phi}$.

- Backward analysis!
- $\bullet \ \frac{|w|+K_{\phi_2}\cdot \ell_2}{l_1} \leq K_{\phi_1} \ \text{and} \ \frac{|w|+K_{\phi_2}\cdot r_2}{r_1} \leq K_{\phi_1}$
- Combine to one condition for w
- $|w| \leq \min\{K_{\phi_1}\ell_1 K_{\phi_2}\ell_2, K_{\phi_1}r_1 K_{\phi_2}r_2\}$

- Change of the reflex vertices! Sufficient!
- Change left side! Condition:

$$|w| \le \min\{ K_{\phi_1} \ell_1 - K_{\phi_2} \ell_2 , K_{\phi_1} r_1 - K_{\phi_2} r_2 \}$$

• And also: $\frac{|w| + K_{\phi_2} \cdot (\ell_2 + \ell_2')}{(l_1 + \ell_2')} \le K_{\phi_1}$

Lemma: Let S be a strategy, that searches for the target in a funnel with opening angle ϕ_2 for $\phi_2 \geq \frac{\pi}{2}$ with competitive ratio K_{ϕ_2} . This strategy can be extended to a strategy of ratio K_{ϕ_1} and opening angle ϕ_1 for $\phi_2 > \phi_1 \ge \frac{\pi}{2}$, if we guarantee

$$|w| \le \min\{ K_{\phi_1} \ell_1 - K_{\phi_2} \ell_2 , K_{\phi_1} r_1 - K_{\phi_2} r_2 \}$$

for the corresponding connecting path.

 $\begin{array}{l} \bullet \;\; \text{Equality:} \;\; K_{\phi_2}(\ell_2-r_2) = K_{\phi_1}(\ell_1-r_1) \text{,} \;\; A := K_{\phi_0}(\ell_0-r_0) \\ \bullet \;\; \text{Hyperbola:} \;\; \frac{X^2}{\left(\frac{A}{2K_\phi}\right)^2} - \frac{Y^2}{\left(\frac{1}{2}\right)^2 - \left(\frac{A}{2K_\phi}\right)^2} = 1 \end{array}$

• Circle: $X^2 + \left(Y + \frac{\cot \phi}{2}\right)^2 = \frac{1}{4\sin^2 \phi}$

Intersection Hyp. Circle: Curve!!

$$X(\phi) = \frac{A}{2} \cdot \frac{\cot \frac{\phi}{2}}{1 + \sin \phi} \cdot \sqrt{\left(1 + \tan \frac{\phi}{2}\right)^2 - A^2}$$

$$Y(\phi) = \frac{1}{2} \cdot \cot \frac{\phi}{2} \cdot \left(\frac{A^2}{1 + \sin \phi} - 1\right)$$

where $A = K_{\phi_0}(\ell_0 - r_0)$

Opt. strat. for opening angle $\pi \geq \varphi_0 \geq \pi/2!$

$$X(\phi) = \frac{A}{2} \cdot \frac{\cot \frac{\phi}{2}}{1 + \sin \phi} \cdot \sqrt{\left(1 + \tan \frac{\phi}{2}\right)^2 - A^2}$$

$$Y(\phi) = \frac{1}{2} \cdot \cot \frac{\phi}{2} \cdot \left(\frac{A^2}{1 + \sin \phi} - 1\right)$$

Change of the boundary points. A also changes, new piece of curve!

Opt. strat. for opening angle $\pi \geq \varphi_0 \geq \pi/2!$

Theorem: The goal of a funnel with opening angle $\phi_0 > \frac{\pi}{2}$ can be found with ratio K_{ϕ_0} .

Proof: Show that the curves fulfil:

$$|w| \le \min\{ K_{\phi_1} \ell_1 - K_{\phi_2} \ell_2 , K_{\phi_1} r_1 - K_{\phi_2} r_2 \} |$$

For any small piece w of the curve. Analytically, lengthy proof! Experimentally!

Opt. strat. opening angle $0 \le \varphi_0 \le \pi/2!$

- The same approach
- But independent from the angle
- Dominated by factor $K_{\pi/2} = \sqrt{2}$
- Require: $w \le \min\{\sqrt{2}(\ell_1 \ell_2), \sqrt{2}(r_1 r_2)\}$.
- Equality: $\ell_1 \ell_2 = r_1 r_2$
- Current angular bisector: Hyberbola!

Opt. strat. opening angle $0 \le \varphi_0 \le \pi!$

Combine strategy 1 and strategy 2

Theorem: In an unknown street-polygon beginning from the source s we can find the target t with an optimal online strategy with competitive ratio $\sqrt{2}$.

Optimal strategy "Worst-Case-Aware"

As long as target t is not visible:

Compute current v_{ℓ} and v_r .

If only one exists: Move directly toward the other.

Otherwise. Repeat:

New reflex vertex v'_{ℓ} or v'_{r} is detected:

Use v'_{ℓ} or v'_{r} instead of v_{ℓ} or v_{r} .

Let ϕ be the angle between v_{ℓ} , the current position and v_r .

If $\phi \leq \frac{\pi}{2}$: Follow the current angular bisctor!

If $\phi > \frac{\pi}{2}$: Follow the curve $(X(\phi), Y(\phi))$.

Until either v_{ℓ} or v_r is explored.

Move toward the non-explored vertex.

Move toward the goal.

Theorem: Searching for the target in a street polygon can be realized within a competitive ratio of $\sqrt{2}$.

- From $\varphi \geq \pi/2$ curve fulfils w condition, analysis/experiments!
- For smaller angles: $\sqrt{2}$ substitute for all K_{ϕ}

Optimal searchpath

- We have seen:
 - Searching for a goal (polygon) in general not competitive
- Question: What is a good searchpath (for polygons)?
- Searching: Target point unknown!
- Offline-Searching: Environment is known
- Online-Searching: Environment unknown

Quality measures!

• Competitive ratio of search strategy A in polygons:

$$C := \sup_{P} \sup_{p \in P} \frac{|\mathcal{A}(s, p)|}{|\mathsf{sp}(s, p)|}$$

Optimal search path in polygons

- Competitive analysis:
- Agent with visibiltly
- Adversary forces any strategy to visit any corridor
- Optimal path is short
- → Any strategy fails (not constant competitive)

Optimal search path in polygons

- Strat1: fully visit any corridor
- Strat2: visit all corr. depth d=1 visit all corr. depth d=2 visit all corr. depth d=4 etc.
- Strat2 seems to be better:
 close targets s are visited earlier
- Can we give a measure?

Search ratio for polygons

 π : **Searchpath**, quality for π : $SR(\pi, P) = \max_{p \in P} \frac{|\pi_s^{p'}| + |p'p|}{|\operatorname{sp}(s, p)|}$

Search ratio in general

Given: Environment \mathcal{E} , Set of goals $\mathcal{G} \subseteq \mathcal{E}$

Graphs G=(V,E): Vertices $\mathcal{G}=V$ Geometric Search $\mathcal{G}=V\cup E$

(Requirement: $\forall p \in \mathcal{E} : |\operatorname{sp}(s,p)| = |\operatorname{sp}(p,s)|$)

Search ratio of a search strategy A for \mathcal{E} :

$$\mathsf{SR}(\mathcal{A}, \mathcal{E}) := \sup_{p \in \mathcal{G}} \frac{|\mathcal{A}(s, p)|}{|\mathsf{sp}(s, p)|}$$

Optimal search ratio:

$$\mathsf{SR}_{\mathsf{OPT}}(\mathcal{E}) := \inf_{\mathcal{A}} \mathsf{SR}(\mathcal{A}, \mathcal{E})$$

Path with optimal search ratio

- Graphs (offline): NP-hard
- Polygons (offline): ???
- Online: Approximation is possible
- ⇒ Goal: Approximate the path with opt. search ratio

Search ratio approximation

- Competitive ratio : $C := \sup_{\mathcal{E}} \sup_{p \in \mathcal{G}} \frac{|\mathcal{A}(s,p)|}{|\mathsf{sp}(s,p)|}$
- Search ratio: $SR(\mathcal{A}, \mathcal{E}) := \sup_{p \in \mathcal{G}} \frac{|\mathcal{A}(s, p)|}{|sp(s, p)|}$
- Optimal search ratio: $SR_{OPT}(\mathcal{E}) := \inf_{\mathcal{A}} SR(\mathcal{A}, \mathcal{E})$
- Approximation: *A search-competitiv*

$$C_s := \sup_{\mathcal{E}} \frac{\mathsf{SR}(\mathcal{A}, \mathcal{E})}{\mathsf{SR}_{\mathsf{OPT}}(\mathcal{E})}$$

Comparison not against SP, but against best possible SRI

Depth-restricted exploration

Def. Exploration-Strategy Expl for \mathcal{E} is called **depth-restrictable**, if we can derive a strategy $\operatorname{Expl}(d)$ such that:

- $\operatorname{Expl}(d)$ explores \mathcal{E} up to depth $d \geq 1$
- ullet return to s after the exploration
- Expl (d) is C-competitive, i.e., $\exists C \geq 1 : \forall \mathcal{E}$:

$$|\operatorname{Expl}(d)| \le C \cdot |\operatorname{Expl}_{\operatorname{OPT}}(d)|$$
.

Searchpath approximation

Algorithm

• Explore \mathcal{E} by increasing depth: $\mathrm{Expl}\,(2^i)$ für $i=1,2,\ldots$

Lemma:

- Agent without vision system
- ullet Environment ${\cal E}$
- \bullet $\mathrm{Expl_{ONL}} :$ C-competitive, depth-restrictable, online exploration strategy for $\mathcal E$

(d. h.
$$|\operatorname{Expl}(d)| \leq C \cdot |\operatorname{Expl}_{\operatorname{OPT}}(d)|$$
)

 \Rightarrow Algorithm gives 4C-Approximation of optimal search path!

Searchpath approximation proof

$$|\Pi_{\text{Expl}_{\text{opt}}(d)}| \le d \cdot (\mathsf{SR}(\Pi_{\text{opt}}) + 1) \tag{1}$$

$$\begin{aligned} \mathsf{SR}(\Pi) & \leq & \frac{\sum\limits_{i=1}^{j+1} |\Pi_{\mathrm{Expl}(2^i)}|}{2^j + \varepsilon} \\ & (\mathsf{Ass.}) & \frac{C}{2^j} \sum\limits_{i=1}^{j+1} |\Pi_{\mathrm{Expl}_{\mathrm{opt}}(2^i)}| & \leq & \frac{C}{2^j} \sum\limits_{i=1}^{j+1} 2^i \cdot (\mathsf{SR}(\Pi_{\mathrm{opt}}) + 1) \\ & \leq & C \cdot \left(\frac{2^{j+2} - 1}{2^j}\right) \cdot (\mathsf{SR}(\Pi_{\mathrm{opt}}) + 1) \leq 4C \cdot (\mathsf{SR}(\Pi_{\mathrm{opt}}) + 1) \end{aligned}$$

Applications

• Corollay:

Trees: Exploration by DFS (C=1) Online or Offline, depth restricted, simple

- ⇒ Searchpath approximation of factor 4
 - Graphs: Online and Offline! CFS $(C = 4 + \frac{8}{\alpha})$ depth-restrictable!!
 - ullet But: Factor depends on rope length (1+lpha)r by depth r
 - CFS sometimes explores more than d (precisely $(1 + \alpha)d$)
- $\Rightarrow \operatorname{Expl}(d)$ not comparable to $\operatorname{Expl}_{\operatorname{OPT}}(d)$
 - Workaround: Compare $\mathrm{Expl}\,(d)$ with $\mathrm{Expl}_{\mathrm{OPT}}(\beta \cdot d)$

β -depth restricted exploration

Def. Exploration strategy Expl for \mathcal{E} is denoted as β -depth restrictable, if we can derive a strategy $\operatorname{Expl}(d)$ such that:

- $\operatorname{Expl}(d)$ explores \mathcal{E} only up to depth $d \geq 1$
- ullet returns to the start s
- Expl (d) is C_{β} -competitiv, i.e., $\exists C_{\beta} \geq 1, \beta > 0 : \forall \mathcal{E}$:

$$|\operatorname{Expl}(d)| \leq C_{\beta} \cdot |\operatorname{Expl}_{\operatorname{OPT}}(\beta \cdot d)|.$$

Searchpath approximation

Theorem:

- Agent without vision
- ullet Environment ${\cal E}$
- Expl: C_{β} -competitive, β -depth restrictable, online exploration strategy for \mathcal{E} , (i.e., $|\operatorname{Expl}(d)| \leq C_{\beta} \cdot |\operatorname{Expl}_{\operatorname{OPT}}(\beta \cdot d)|$)
- \Rightarrow Algorithm (exploration/double depth) gives a $4\beta C_{\beta}$ -approximation of the optimal searchpath

Corollary: Unknown graphs, Algorithm with CFS is $4(1+\alpha)(4+\frac{8}{\alpha})$ -approximation of optimal searchpath