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Rep.: Search ratio approximation

e Competitive ratio : C := supsup A(s, p)|
g peg [sp(s; D)

e Search ratio: SR(A,E) :=sup A(s, p)
pey ‘Sp(syp)‘

e Optimal search ratio: SRopt(€) := iﬂfSR(A, )

e Approximation: A search-competitiv

SR(A, £)
(s :=su
¢ SRopt(€)

e Comparison not against SP, but against best possible SR
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Rep.: Non approximation results: Theorem

No constant approximation of the search ratio! Graphs, no vision!

1. Planar graph G = (V, E/) multiple edges, goal set V.
2. General graph G = (V, E) goal set V.
3. Directed graph G = (V, E) goal set E and V. (Exercise!)

Counter examples, lower bound! Blackboard!
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Rep.: Searching with vision!

Problem: Return path from last(d) to s has length < d, might be

false! But: sp(last(d), s) < |roprsst@)

Theorem:

e Roboter with vision
e Environment &£
e ixpl: Cg-competitive, 5-depth restrictable, Online
Explorationstrategy for £
(i.e. [Expl(d)| < Cg - [Explopr(8 - d)])
= Algorithm gives 83C 3-Approximation of optimal search ratio.
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Rep.: Proof of the Theorem

‘WQPTISaSt(d) ’ ‘HExplopt (d) ‘
SR(Hopt) > d > 2 A ’HExplopt(d)| < 2d'SR(HOPt)

Ratio against search path:

J+1 J+1 Jj+1 _
221 Tlgsp1(20) ZZl Hexpl,,, (529)] 221 52" SR(ILopt)
2 < s 2 <205 2

< 86C5 - SR(ITypt) -
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Rep.: Applications!

e Simple polygon, Offline: SWR (Cs =1 = )
= 8-Approximation

e Rectilinear Polygons, Online: Greedy-Online (C5 = /2,3 = 1)
= 81/2-Approximation

e Simple Polygons, Online: PolyExplore (Cs = 26,5 = 1)
= 212-Approximation

Consider exploration task! Full and depth restricted!
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Rep.: Simple Polygon Offline

e Optimal exploration tour

e Agent with vision, start point s, boundary

e Polygon is fully known

e Depth restriction

e First: General approach. Then: Depth restriction!
e Monotone, rectlilinear, general!
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Rep.: Visit essential cuts! Def.

a) (Cuts) Extension of reflex vertex
b) Necessary cuts (w.r.t. s)

c) Dominance-Relationsship P., C P,
d) Essential cuts

e) Order of the essential cuts

necessary! /
not  neaessary:

P T U
9 2
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Rep.: Order along the boundary Lem.

e Rectilinear polygon

e Essential cuts intersect at most once

e SWR visits cuts by order around boundary
e Contradiction! Shortcut!

e O(n) Algorithm!!

c2 cl
cl — - -

o
e
@
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Rep.: SWR (RW Polygon) O(n) Theo.

. $ s
| e 2
(i) Wesentliche Cuts (ii) Abschneiden! (iii) Triangulation
O(n) O(n) O(n)
c2
c3 :
cl - °
(iv) Spiegeln und Ausrollen!! (vi) Zurckklappen!
(v) Weg berechnen O(n)
O(n)
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Rep.: SWR (Rect. polygon) depth restriction?

e lgnore cuts with distance > d, Shortest path to cut
e Ignore a cut here, Algorithm as before

e Expl(d) = Explopr(d)

e Theorem: 8 Approximation of optimal search path!
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Rectilinear polygons Online

e Agent with vision, start point s

e Szene is not known!

e Depth restriction?

e First: General approach. Then: Depth restriction!

—y
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Rectilinear polygons Online

e Assume, s boundary point

e Greedy! Scan the boundary up to the first invisible point. Move
to the cut on the shortest path!

e Shortest Li-path to the cut, online!

e Algorithmus Always approach the next reflex vertex along the
boundary that blocks the visibility.

—y
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Online variant for rectilinear polygons
Exploration rectilinear polygons DKP

WHILE Polygon not fully explored
Do Move orthogonally toward the cut of next reflex vertex in

cw-order along the boundary
END

—y
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Li-opt./+/2-competitive! Theorem
e Analysis: 1) Show Li-optimal path to essential cuts
e Inductively! Number of steps! First step, trivial!
e Ass.: Along opt. Li-path to an essential cut!

e Next step, visit cut, ok! Otherwise, vertex on the track! Next step
also optimal!

—y
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Li-opt./+/2-competitive! Theorem

e Sketch!
e Analysis: 2) Combine the optimal L;-paths!
e [1-paths, combination is also L;-optimal!
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Lq-opt.//2-competitive! Theorem
e Shift paths toward‘the cuts, such that (Euclidean) SWR is

included! Path has the same length!
e [ -optimal path between any two points!
e Euclidean shortest path in between
e Triangle! Situation! Blackboard! v/2-Umweg maximal!

-~
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Li-opt./+/2-competitive! Theorem
e \/2-competitive
e Depth restrictable!
e Online: Ignore Cuts with distance > d

e Explong(d) < v2 Explopr(d)
e Theorem: 8+v/2-Approximation
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SWR (General case): Offline!

e Corner problem!!

e Sequence of essential cuts, successive cuts

e Not visited by order along boundary.

e But the corresponding P, !!!

Online Motion Planning
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Visisting the corners!

The SWR visits the different corners by the order along the
boundary.

Proof: As before! Local shortcuts!

c2
cl

c3

C4

Adjustments inside the corners: Not easy to realize!

Online Motion Planning Search path approximation 29.6.2017 (©Elmar Langetepe

SS'17 20



Touring a sequence of polygons (TPP)

e Sequence of convex polygonsi

1

e Start s, target ti

e Visit polygons w.r.t. sequence, shortest pathi

Fences for subsequence!

Intersections!!

Konvex boundary!!

t il
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TPP

. . e General version:
e Simple version:

e O(nklog )

o Build(Query): O(nklog7)i
e Compl.: O(n)i

e Query (fixed s): O(klog %)

e Fences, convex boundary, etc.l

o O(nk?logn)i

e Build(Query): O(nk?logn)i

e Compl.: O(nk)i

e Query (fixed s): O(klogn +m)i
Results from: Dror, Efrat, Lubiw, Mitchell 2003!!s
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Application: SWR

Essential parts!
Use the order along the boundary!
One common fence, intersections!

Start and target identical!

° O(n4) 91

e O(n*) Tan et al. '99

e O(n’logn) by this result!
e Theorem
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Application: General simple polygons Offline

e Compute optimal exploration tour

e Agent with vision, start s at the boundary

e Depth restriction: lgnore cuts with distance > d
e Expl (d) = Explopr(d)

e Theorem: 8 Approximation, Online??
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Remark: Depth restriction Offline

e P(d) subset of Pi
» Expl(d) = Explppr(d) can leave P(d)s

[\
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Vision: Negative result, polygon with holes
e Much more difficult
e Example: See boundary < see everything

e Not true for such scenes
e Offline: Computation SWR is NP-hart, reduction idea TSP
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Polygons with holes

There is no constant online approximation of the optimal search ratio

Theorem Let A be an online strategy for the exploration of a
polygon with n obstacles (holes), we have: |I14]| > /n|llop7|

Proof: LB by examples!
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Polygon with holes: |II4] > /n|llppr|

" Spike k
ii Base k—1

H;
1HHF:%

Y
lopr

o Wy =2k, HH =k, k spikes, (k — 1) bases, (2k — 1)k rectanglesl

. Hy o . _
OHZ—(%),L-_l,WZ—Qk 1+1>k,0=1,... ki

e Situation H;: Online strategy does not know position
of block H;, I
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e Rekursively

o Left side: Look behind any block

e Right side: Move once upwards

e Adversary: Find block after (k) steps
o Altogether: Q(k x k) for any strategy
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Polygons with holes: |II4| > /n|Ilppr|

e Optimal strategy: Move directly to the blocki

e Go on recursively, &t the end move along any blocki
o llopr| =Wi+23 | Hi <6k

e k= |+/n] gives the results
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Polygons with holes Corollary

e No O(1)-competitive
exploration for such

environments (2(1/n))

e Optimal exploration has a bad !
Search Ratio

e [rick: Extension

e Then: Optimal exploration has

| O(k)
Search Ratio O(1) TR &
e Any online strategy has Search H
Ratio Q(k)
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Summary

e Connection between exploration and search:

e 1 constant-competitive, depth-restrictable exploration strategy
= d search strategy with competitive Search Ratio

° ﬁ constant-competitive exploration strategy,
but 4 'extendable’ lower bound
= ﬂ search strategy with competitive Search Ratio
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