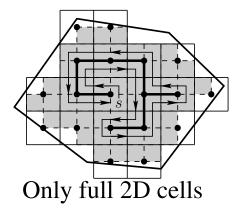
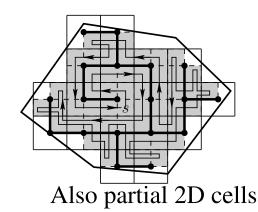

Online Motion Planning MA-INF 1314 General Grids

Elmar Langetepe University of Bonn


General gridpolygons

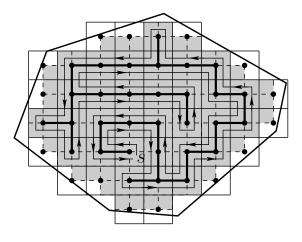

- Change the modell, due to the analysis
- ▶ 2D cells with center, sub-cells
- See adjacent 2D Zellen
- Tool W of size D

Spanning Trees

- Online with DFS with a Spanning Tree of 2D vertices
- Move the tool along the tree
- Left-Hand-Rule along the tree!
- Variants 2D cell totally free for the edge/or not!
- Any cell only once or more than once

2D Spiral STC: 2DSPSTC(parent, current)

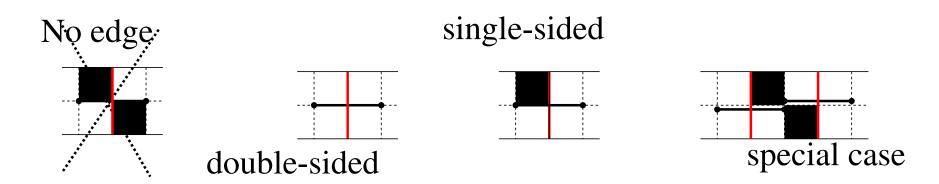
Mark *current* as explored while *current* has unexplored neighbour **do**


- Search from parent in ccw order neighbour free non-explored/free
- Span. Tree edge current zu free.
- Move tool L-H-R along Span.Tree edge to first sub-cell of free
- 2DSPSTC(current, free)

end while

if $current \neq s$ then

From current by L-H-R along
 Span.Tree to subcell of parent


end if

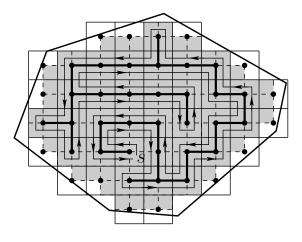
Only-full 2D cells

Partially blocked 2D cells

- Spanning Tree, edge is free/not the full cell
- Reachable *D* sub-cells?
- Different types
- **Definition:** double-sided edge, one-sided edge

2D Spiral STC: 2DSPSTC(parent, current)

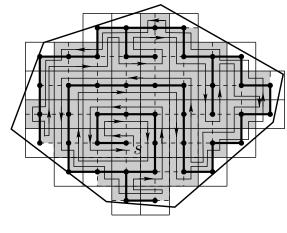
Mark *current* as explored while current has unexplored neighbour do


- Search from parent in ccw order neighbour *free* non-explored/free
- Span. Tree edge current zu free.
- Move tool L-H-R along Span. Tree edge to first sub-cell of *free*
- 2DSPSTC(current, free)

end while

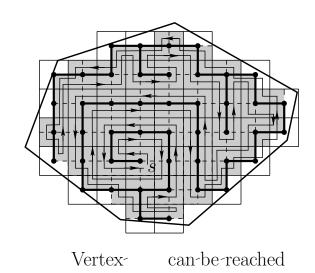
if $current \neq s$ then

 From current by L-H-R along Span. Tree to subcell of parent

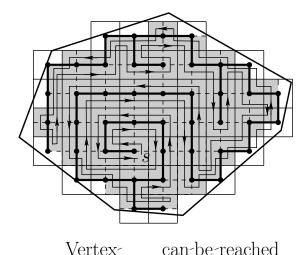

end if

Onlyfull 2D cells

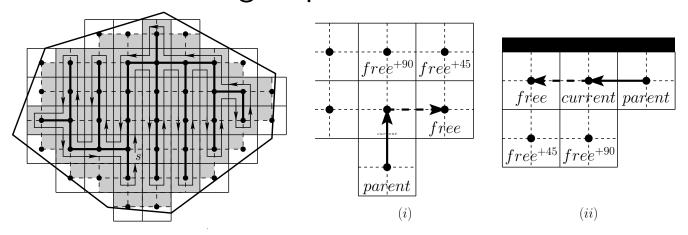
Spiral STC: SPSTC(parent, current)


- Search from *parent* in ccw order neighbour *free*/non-explored, s.th. spanning tree edge can be build (might be single-sided)
- Search from *parent* in ccw order neighbour free non-explored/free

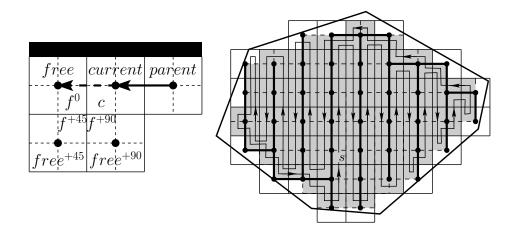
Vertexcan-be-reached


Spiral STC: SPSTC(parent, current)

- Move tool along the spanning tree edge to the first reachable sub-cell of free. Left-Hand-Rule for double-sided edges. Avoid obstacles of single-sided edges. Tool might change to the left of the spanning tree edge.
- Move tool L-H-R along Span. Tree edge to first sub-cell of free


Spiral STC: SPSTC(parent, current)

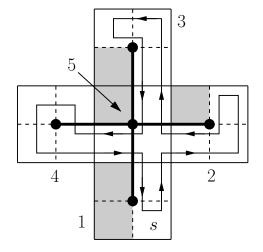
- Move tool along the spanning tree edge to the first reachable sub-cell of free. Left-Hand-Rule for double-sided edges. Avoid obstacles of single-sided edges. Tool might change to the left of the spanning tree edge.
- From *current* by L-H-R along Span. Tree to subcell of parent


Less rotations for the tool

- Avoid spiral-like paths
- Move in columns
- Scan also diagonally adjacent 2D cells
- ScanSTC 2D Algorithm
- Also for the Backtracking step!

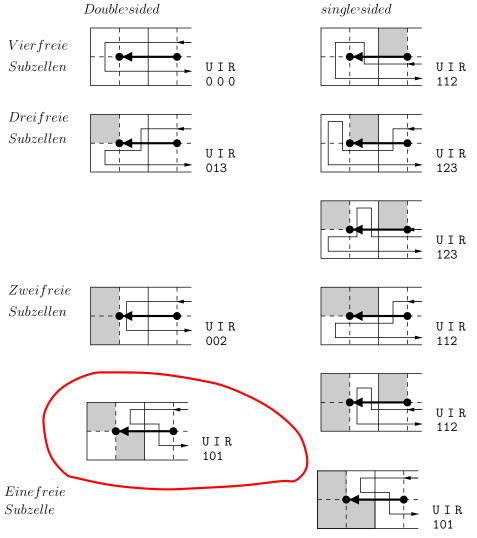
Less rotations for the tool

- Avoid spiral-like paths
- Move in columns
- Also for the general case/path should exist
- Scan also diagonally adjacent 2D cells
- ScanSTC Algorithm
- Also for the Backtracking step!


Analysis! Theorem

- General Spiral STC
- Number of steps for the tool
- As given by SmartDFS, C plus overhead
- ullet D sub-cells, at the boundary $I\!\!K$ in total $I\!\!I$

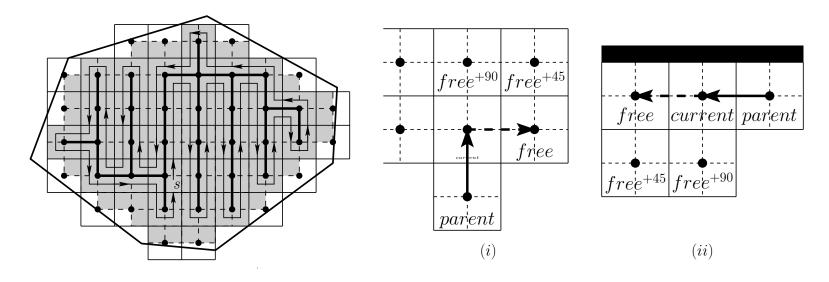
P gridpolygon, C reachable sub-cells. K reachable sub-cells that are diagonally adjacent to a blocked sub-cell. P is explored by Spiral-STC or Scan-STC. Requires O(C) space and O(C) time. The number of steps for the tool is restricted to $S \leq C + K$.


Number of steps! Example!

- Locally, count boundary sub-cells
- Local analysis, multiple visits, charge boundary sub-cells
- 2D Inner-cell/ Intra-cell
- Systematically: Boundary sub-cells charged by Inner plus Intral

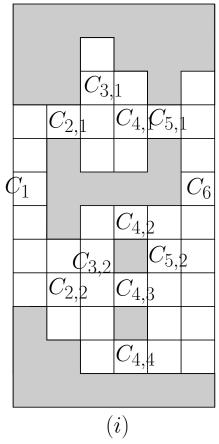
Cell	İntra	Inner	Full	Bdcells
1	0	1	1	2
2	1	2	3	3
3	1	2	3	3
4	1	1	2	2
5	1	2	3	3

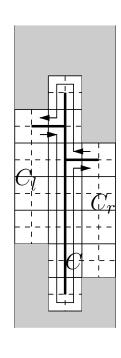
Number of steps! Theorem Systematically!



Running time and space required Theorem

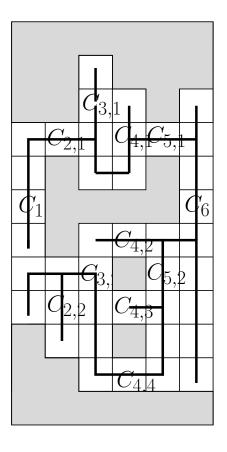
- C + K steps but K is bounded by C
- Local decisions: O(1)
- Running time and space O(C)


Analysis of 2D-ScanSTC


- Give a Scan-Preference: I.e. Vertically
- Decide only locally (more information)
- How many bad horizontal edges?
- ullet Optimal numberl H_{opt}
- ullet Compare with 2D-ScanSTC: Say H_{STC}

Analysis of 2D-ScanSTC

- Columns connectivity
- ullet From Left to Right X nach Y
- Sum up the Differences: Overall Z
- Connectivity changes


(ii)

Proof Sketch

 \bullet H_{Opt} optimal number of horizontal edges in the spanning tree. Z number of connectivity changes of P. 2D-Scan-STC requires

$$H_{STC} \le H_{Opt} + Z + 1$$

horizontal edges in its spanning tree.

