Online Motion Planning MA-INF 1314
Graphexploration/Marker

Elmar Langetepe
University of Bonn

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS'17 1

Repetition: CFS Algorithm Invariants Lemma
Execution CFS—Algorithm, properties hold:

1) Any incomplete vertex belongs to a tree in T .
ii) There is always an incomplete vertex with v € V* with
dg+(s,v) < r, until G* # G.
iii) For any chosen root vertex s;: dg«(s,s;) <.
iv) After pruning T; is fully explored by DFS. All trees T' € T have
size |T'| > <.

v) All trees T' € T are disjoint (w.r.t. edges)

Proof: i) and v) simply hold by construction

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS'17 2

Rep Analysis Theorem/Corollary
CFS-Algorithm known depth 7 (4 + £)-competitive/cost

O(L]+ |V|/a).

uber Teilbaume T'r

e Subtree T'g, cost

e K{(Tr): path from s to s; in G*

o KQ(TR) DFS Kg(TR) bDFS (Graph')
o ZKg(TR) < 2-|E| bDFS global

’ZKQ(TR) 22 Tr| <2-|E

o ZKl(TR) < 22r< SZ\TR\ < S\E]

TR TR

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe

SS'1r 3

Rep: Graphexploration, unknown depth r

e Doubling-Heuristic: O(|E| + logr|V|) steps Schritte, Corollary

e Adjust prune/explore with current value dg=+(s, s;)

. prune(TZ-, si) adGZ(S’Si); 9O‘dG1*6(573i>)

o explore(T, T3, s;, (1 + a)dg+(s,s;))

e Lemma iv): Rest of T; fully explored by DFS, all T € T have size
|T| > dG*(Z,T)oz

e Theorem/Corollary CFS—Algorithm unknown depth R is
(4 + £)—competitive/has cost O(|E| + |V|/«)

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS'17 4

Look-ahead o - » necessary
Lower bound Q(|E|1*¢) Offline accumulator variant, if look-ahead is

smaller than linear in r (constant).

e 2r is not sufficient: At least 2r + 1!
e With 2r + o(r) not efficient! (small-o notation!)
e Graph: path and clique, beyond linear

e Accumulator size n + f(n): € (%) Schritte!
o |[E|€C-n? f(n)=nl"¢
e Conjecture: r + o(r) is not sufficient for tether variant. Open!!

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS'17 5

Look-ahead « - » necessary

Lemma For the accumulator variant with accumulator size of

3 .
2r 4+ d for constant d there are examples where €2(|E'|2) exploration
steps are necessary.

Proof: Blackboard!

Note: It can still be competitive!

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS'17 6

Offline cost?

e Mechanical cost/Computational cost
e Build the spanning trees

e Move along the shortest path

e Merge the trees

e DFS/bDFS

e Not all linear

e Exercise

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe

SS'17 7

Different model

e Vertices/Edges have been marked

e As a landmark

e Assume: This is not possible! How to distinguish?
e Vertices cannot be distinguished immediately!

e Local order of the edges is given

e May be not a planar embedding!
e Given: G = (V, E,S), S cyclic orders!

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe

SS'17 8

Different model, local order

er

€5

€11

€4 ey
€3

€3 e

€10

€1 €9

ey e1

From different vertices, permutation! Locally fixed

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS 17

Mapping problem!
e Determine the graph (for navigation!)
e Store all given information
e Marker/pebble is necessary

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS 17 10

One-Marker Algorithm (Dudek et al.)

e Maintain known graph S

e List L of adjacent unknown edges

e Choose edge ¢ € L from some b € S

e Visits vertex u

e Put pebble/marker at u

e Search in S from b for the pebble

e If marker was not found, add edge(b,u) and vertex u to S

e Insert the adjacent edges from u into L

e |If marker has been found at known vertex v = u, try to search for
the edge e = (b, v) by the order from b

e For this: Place marker onto b, move to b and then in S back to
v = u along shortest path

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS 17 11

e Check the outgoing edges for
e One will be the right one! Update S'
e Pseudocode! Exercisel!

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS 17 12

Analysis: One-Marker Algorithmus

e Mechanical cost: Number of steps!!

e Assumption: No loops!

e Set the marker O(1)

e Search for the marker: DFS on vertices 2|Vg|
e Bring the marker back, move back: 2|Vg|

e Do this for all possible edges: O(|E| x |V])

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS '17 13

Analysis: One-Marker Algorithm

e Computational cost: Offline!

e Shortest path in graphs

e Dijkstra: O(|Eg| + |Vs|log |Vs])
e For any edge

o O(IEP + |E||V|log|V])

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS 17 14

Graph-exploration

e Labyrinths, grid-graphs, gridpolygons, general graphs
e Graph-exploration: DFS and LB of 2

e Gridpolygons: Simple/general

e SmartDFS %, LB %

e STC Alg. |C|+ |B|

e Tether/Accumulator/Depth variants: O(|E| + |V|/«a)
e Marker Algorithm

e Online TSP for planar graphs!

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS 17 15

Kap. 2: Polygonal environments

e Set of disjoint simple polygons in the plane

e Boundary polygon

e Different tasks: Searching for a goal/escape from a labyrinth

e Different sensor models

e First: Touch sensor, precise odometry, escape from a labyrinth

-
A=

.

Online Motion Planning

Graphexploration 8.5.2017 (©Elmar Langetepe

SS'17 16

Escape from a labyrinth: Model

e Point-shaped agent

e [ouch sensor

e Follow the wall

e Follow a direction (exact)

e Count rotational angles, in total

e No further memory

counter =0

Online Motion Planning

Graphexploration 8.5.2017 (©Elmar Langetepe

SS'17 17

Pledge Algorithm

. Choose angle ¢, rotate agent heading in this direction.
Move into direction ¢, until agent reaches the boundary.
Move right and keep in contact with the wall, Left-Hand.

= W =

Follow the wall by Left-Hand-Rule and sum up the rotational
angles, until the overall rotational angle attains value zero, now

GOTO (2).

counter =0

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS '17 18

Pledge Algorithm

e Angular counter mod 27 = 0, not sufficientl
o Only Left-Hand-Rule not sufficientl

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS'17 19

Correctness, structural properties, non-negative

counter
Lemma The angular counter of the Pledge Algorithm is never
positive.
Proof:

e /ero at the beginning

e /ero, when the boundary is left

e Right turn after hitting the boundary = negative
e Continuous change, zero = movement is possible

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS 17 20

Correctness, no-success, finite path repeated
Lemma If the agent does not leave the labyrinth, after a while the
agent repeatedly follows the same finite path, II,, again and again.

Proof:

e Path is a polygonal chain

e Vertices |: Vertices of the polygons

e Vertices Il: Hit-Points on the edges

e Correspond to vertices of type |

e Finite set S of possible vertices of the path

e [he same counter value at the same vertex = the same path
again and again

e Assume: Never the same value

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS 17 21

e Case 1: After a while, keeping on the boundary =- always the
same path along one polygon

e Case 2: Leaving more than |S| times (infinitely often)

e — at least twice with the same value 0 at the same vertex,
contradiction!

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS 17 22

Correctness: 11, no self-intersection

Lemma Asumme the agent does not leave the labyrinth by Pledge
and let II, be the repeated path. II, has no self-intersections.

Difference: Intersection/Touching

Plto) P(t;) P(ty) =P(t)
b (t1) =

Intersection Touching

Intersection only at the boundary! All free paths run in parallel!

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS 17 23

Correctness: 11, no self-intersection

e Proof: Ass. Intersection! iTwo parts one of which is free, say B

e Shortly behind z angular counter C'4(2’), Cp(z’)
e Cp(Z)=—pFand Cyx(2) = -+ 2knfork e Z

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS 17 24

Correctness: 11, no self-intersection

o Up(2')=—0Fand Cx(2) = —B + 2km for k € Z

e k=07 A and B are the same! Contradiction!

e k£ > 07 Lemma, C4(z') negative

e Means k < 0 and Cx(p) < Cp(p) for all p from 2’ to 2"
e Path B leaves the obstacle first, no intersection!!!

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS 17 25

Correctness proof
Theorem For any labyrinth and any starting position the

pledge-algorithm will leave the labyrinth, if this is possible.

Proof:

e Ass.: Agent does not reach the boundary

e Lemma Path II, again and again

e Lemma No intersections

e Orientations of II,: 1) cw-order 2) ccw-order

e 2) +27 per full round, finally positive, contradiction

e Means 1) —27 per full round

e Remains negative after a while. Moves around obstacle!
e Orientation: cw-order, Left-Hand = Enclosed!

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe

SS'17 26

Pledge algorithm with sensor errors

e Possible errors?
e Left-Hand-Rule, stablel
e Counting rotational angles!

e Hold the direction in the free space! :/;
e For example: Compass! i
e Full turns ok, but not precisely! Dll
e Leave the obstacle slightly too early or

too late!

e [he main direction can be hold!
e Still correct?

Online Motion Planning Graphexploration 8.5.2017 (©)Elmar Langetepe SS '17 27

