
Online Motion Planning MA-INF 1314
Graphexploration/Marker

Elmar Langetepe

University of Bonn

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 1

Repetition: CFS Algorithm Invariants Lemma
Execution CFS–Algorithm, properties hold:

i) Any incomplete vertex belongs to a tree in T .

ii) There is always an incomplete vertex with v ∈ V ∗ with

dG∗(s, v) ≤ r, until G∗ 6= G.

iii) For any chosen root vertex si: dG∗(s, si) ≤ r.

iv) After pruning Ti is fully explored by DFS. All trees T ∈ T have

size |T | ≥ αr
4 .

v) All trees T ∈ T are disjoint (w.r.t. edges)

Proof: i) and v) simply hold by construction

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 2

Rep Analysis Theorem/Corollary
CFS–Algorithm known depth r (4 + 8

α)–competitive/cost

Θ(|E|+ |V |/α).

über Teilbäume TR

• Subtree TR, cost

• K1(TR): path from s to si in G∗

• K2(TR): DFS, K3(TR): bDFS (Graph!)

•
∑
TR

K3(TR) ≤ 2 · |E| bDFS global

•
∑
TR

K2(TR) =
∑
TR

2 · |TR| ≤ 2 · |E|, DFS, disjoint

•
∑
TR

K1(TR) ≤
∑
TR

2r ≤ 8
α

∑
TR

|TR| ≤ 8
α|E|

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 3

Rep: Graphexploration, unknown depth r

• Doubling-Heuristic: O(|E|+ log r|V |) steps Schritte, Corollary

• Adjust prune/explore with current value dG∗(s, si)

• prune(Ti, si,
αdG∗(s,si)

4 ,
9αdG∗(s,si)

16)

• explore(T , Ti, si, (1 + α)dG∗(s, si))

• Lemma iv): Rest of Ti fully explored by DFS, all T ∈ T have size

|T | ≥ dG∗(s,T)α
4

• Theorem/Corollary CFS–Algorithm unknown depth R is

(4 + 8
α)–competitive/has cost Θ(|E|+ |V |/α)

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 4

Look-ahead α · r necessary
Lower bound Ω(|E|1+ε) Offline accumulator variant, if look-ahead is

smaller than linear in r (constant).

• 2r is not sufficient: At least 2r + 1!

• With 2r + o(r) not efficient! (small-o notation!)

• Graph: path and clique, beyond linear

• Accumulator size n+ f(n): Ω
(
n3

f(n)

)
Schritte!

• |E| ∈ C · n2, f(n) = n1−ε

• Conjecture: r + o(r) is not sufficient for tether variant. Open!!

S

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 5

Look-ahead α · r necessary
Lemma For the accumulator variant with accumulator size of

2r + d for constant d there are examples where Ω(|E|32) exploration

steps are necessary.

Proof: Blackboard!

Note: It can still be competitive!

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 6

Offline cost?

• Mechanical cost/Computational cost

• Build the spanning trees

• Move along the shortest path

• Merge the trees

• DFS/bDFS

• Not all linear

• Exercise

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 7

Different model

• Vertices/Edges have been marked

• As a landmark

• Assume: This is not possible! How to distinguish?

• Vertices cannot be distinguished immediately!

• Local order of the edges is given

• May be not a planar embedding!

• Given: G = (V,E, S), S cyclic orders!

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 8

Different model, local order

e8

e6

e9

e10

v2

v5

v3

e4

e11

e3

e4

e11

e5

e7

e5

e6

e4

e9

e10

e1
e4

e1

e2
e3

e3

v1v1
v4

v5 v6

v2

v3

e2

e1

e5

e7

From different vertices, permutation! Locally fixed

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 9

Mapping problem!
• Determine the graph (for navigation!)
• Store all given information
• Marker/pebble is necessary

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 10

One-Marker Algorithm (Dudek et al.)

• Maintain known graph S

• List L of adjacent unknown edges

• Choose edge e ∈ L from some b ∈ S
• Visits vertex u

• Put pebble/marker at u

• Search in S from b for the pebble

• If marker was not found, add edge(b, u) and vertex u to S

• Insert the adjacent edges from u into L

• If marker has been found at known vertex v = u, try to search for

the edge e = (b, v) by the order from b

• For this: Place marker onto b, move to b and then in S back to

v = u along shortest path

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 11

• Check the outgoing edges for

• One will be the right one! Update S!

• Pseudocode! Exercise!

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 12

Analysis: One-Marker Algorithmus

• Mechanical cost: Number of steps!!

• Assumption: No loops!

• Set the marker O(1)

• Search for the marker: DFS on vertices 2|VS|
• Bring the marker back, move back: 2|VS|
• Do this for all possible edges: O(|E| × |V |)

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 13

Analysis: One-Marker Algorithm

• Computational cost: Offline!

• Shortest path in graphs

• Dijkstra: O(|ES|+ |VS| log |VS|)
• For any edge

• O(|E|2 + |E||V | log |V |)

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 14

Graph-exploration

• Labyrinths, grid-graphs, gridpolygons, general graphs

• Graph-exploration: DFS and LB of 2

• Gridpolygons: Simple/general

• SmartDFS 4
3, LB 7

6

• STC Alg. |C|+ |B|
• Tether/Accumulator/Depth variants: Θ(|E|+ |V |/α)

• Marker Algorithm

• Online TSP for planar graphs!

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 15

Kap. 2: Polygonal environments

• Set of disjoint simple polygons in the plane

• Boundary polygon

• Different tasks: Searching for a goal/escape from a labyrinth

• Different sensor models

• First: Touch sensor, precise odometry, escape from a labyrinth

s

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 16

Escape from a labyrinth: Model

• Point-shaped agent

• Touch sensor

• Follow the wall

• Follow a direction (exact)

• Count rotational angles, in total

• No further memory

counter = 0

+
+

+

−

−

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 17

Pledge Algorithm

1. Choose angle ϕ, rotate agent heading in this direction.

2. Move into direction ϕ, until agent reaches the boundary.

3. Move right and keep in contact with the wall, Left-Hand.

4. Follow the wall by Left-Hand-Rule and sum up the rotational

angles, until the overall rotational angle attains value zero, now

GOTO (2).

counter = 0

+
+

+

−

−

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 18

Pledge Algorithm

• Angular counter mod 2π = 0, not sufficient

• Only Left-Hand-Rule not sufficient

s
s

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 19

Correctness, structural properties, non-negative
counter

Lemma The angular counter of the Pledge Algorithm is never

positive.

Proof:

• Zero at the beginning

• Zero, when the boundary is left

• Right turn after hitting the boundary ⇒ negative

• Continuous change, zero ⇒ movement is possible

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 20

Correctness, no-success, finite path repeated
Lemma If the agent does not leave the labyrinth, after a while the

agent repeatedly follows the same finite path, Π◦, again and again.

Proof:

• Path is a polygonal chain

• Vertices I: Vertices of the polygons

• Vertices II: Hit-Points on the edges

• Correspond to vertices of type I

• Finite set S of possible vertices of the path

• The same counter value at the same vertex ⇒ the same path

again and again

• Assume: Never the same value

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 21

• Case 1: After a while, keeping on the boundary ⇒ always the

same path along one polygon

• Case 2: Leaving more than |S| times (infinitely often)

• ⇒ at least twice with the same value 0 at the same vertex,

contradiction!

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 22

Correctness: Π◦ no self-intersection
Lemma Asumme the agent does not leave the labyrinth by Pledge

and let Π◦ be the repeated path. Π◦ has no self-intersections.

Difference: Intersection/Touching

Intersection

P (t1) = P (t2)

P (t0) P (t3)

T̈ouching
P (t0)

P (t1) = P (t2)

P (t3)

Intersection only at the boundary! All free paths run in parallel!

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 23

Correctness: Π◦ no self-intersection

• Proof: Ass. Intersection! Two parts one of which is free, say B

• Shortly behind z angular counter CA(z′), CB(z′)

• CB(z′) = −β and CA(z′) = −β + 2kπ for k ∈ Z

z′

B

−β

A

−β + 2kπ

?

z

z′′

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 24

Correctness: Π◦ no self-intersection

• CB(z′) = −β and CA(z′) = −β + 2kπ for k ∈ Z
• k = 0? A and B are the same! Contradiction!

• k > 0? Lemma, CA(z′) negative

• Means k < 0 and CA(p) < CB(p) for all p from z′ to z′′

• Path B leaves the obstacle first, no intersection!!!

z′

B

−β

A

−β + 2kπ

?

z

z′′

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 25

Correctness proof
Theorem For any labyrinth and any starting position the

pledge-algorithm will leave the labyrinth, if this is possible.

Proof:

• Ass.: Agent does not reach the boundary

• Lemma Path Π◦ again and again

• Lemma No intersections

• Orientations of Π◦: 1) cw-order 2) ccw-order

• 2) +2π per full round, finally positive, contradiction

• Means 1) −2π per full round

• Remains negative after a while. Moves around obstacle!

• Orientation: cw-order, Left-Hand ⇒ Enclosed!

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 26

Pledge algorithm with sensor errors

• Possible errors?

• Left-Hand-Rule, stable!

• Counting rotational angles!

• Hold the direction in the free space!

• For example: Compass!

• Full turns ok, but not precisely!

• Leave the obstacle slightly too early or

too late!

• The main direction can be hold!

• Still correct?

l

Online Motion Planning Graphexploration 8.5.2017 c©Elmar Langetepe SS ’17 27

