Online Motion Planning MA-INF 1314 Graphexploration/Marker

Elmar Langetepe
University of Bonn

Repetition: CFS Algorithm Invariants Lemma

Execution CFS-Algorithm, properties hold:
i) Any incomplete vertex belongs to a tree in \mathcal{T}.I
ii) There is always an incomplete vertex with $v \in V^{*}$ with $d_{G^{*}}(s, v) \leq r$, until $G^{*} \neq G$.II
iii) For any chosen root vertex $s_{i}: d_{G^{*}}\left(s, s_{i}\right) \leq r$.I
iv) After pruning T_{i} is fully explored by DFS. All trees $T \in \mathcal{T}$ have size $|T| \geq \frac{\alpha r}{4}$.
v) All trees $T \in \mathcal{T}$ are disjoint (w.r.t. edges) \|

Proof: i) and v) simply hold by construction

Rep Analysis Theorem/Corollary

CFS-Algorithm known depth $r\left(4+\frac{8}{\alpha}\right)$-competitive/cost $\Theta(|E|+|V| / \alpha)$.I
über Teilbäume $T_{R}{ }^{\text {I }}$

- Subtree T_{R}, costl
- $K_{1}\left(T_{R}\right)$: path from s to s_{i} in G^{*}
- $K_{2}\left(T_{R}\right)$: DFS, $K_{3}\left(T_{R}\right)$: bDFS (Graph!)
- $\sum_{T_{R}} K_{3}\left(T_{R}\right) \leq 2 \cdot|E|$ bDFS globall
- $\sum_{T_{R}} K_{2}\left(T_{R}\right)=\sum_{T_{R}} 2 \cdot\left|T_{R}\right| \leq 2 \cdot|E|$, DFS, disjoint
- $\sum_{T_{R}}^{T_{R}} K_{1}\left(T_{R}\right) \leq \sum_{T_{R}} 2 r \leq \frac{8}{\alpha} \sum_{T_{R}}\left|T_{R}\right| \leq \frac{8}{\alpha}|E|$

Rep: Graphexploration, unknown depth r

- Doubling-Heuristic: $O(|E|+\log r|V|)$ steps Schritte, Corollaryl
- Adjust prune/explore with current value $d_{G^{*}}\left(s, s_{i}\right) \|$
- prune $\left(T_{i}, s_{i}, \frac{\alpha d_{G^{*}}\left(s, s_{i}\right)}{4}, \frac{9 \alpha d_{G^{*}}\left(s, s_{i}\right)}{16}\right) \|$
- explore $\left(\mathcal{T}, T_{i}, s_{i},(1+\alpha) d_{G^{*}}\left(s, s_{i}\right)\right)$
- Lemma iv): Rest of T_{i} fully explored by DFS, all $T \in \mathcal{T}$ have size $|T| \geq \frac{d_{G^{*}}(s, T) \alpha}{4}$
- Theorem/Corollary CFS-Algorithm unknown depth R is $\left(4+\frac{8}{\alpha}\right)$-competitive/has cost $\Theta(|E|+|V| / \alpha) \|$

Look-ahead $\alpha \cdot r$ necessary

Lower bound $\Omega\left(|E|^{1+\epsilon}\right)$ Offline accumulator variant, if look-ahead is smaller than linear in r (constant).॥

- $2 r$ is not sufficient: At least $2 r+1$!
- With $2 r+o(r)$ not efficient! (small-o notation!)!
- Graph: path and clique, beyond linearl
- Accumulator size $n+f(n): \Omega\left(\frac{n^{3}}{f(n)}\right)$ Schritte!!
- $|E| \in C \cdot n^{2}, f(n)=n^{1-\epsilon} \|$
- Conjecture: $r+o(r)$ is not sufficient for tether variant. Open!!!

Look-ahead $\alpha \cdot r$ necessary

Lemma For the accumulator variant with accumulator size of $2 r+d$ for constant d there are examples where $\Omega\left(|E|^{\frac{3}{2}}\right)$ exploration steps are necessary. II

Proof: Blackboard!॥
Note: It can still be competitive!!

Offline cost?

- Mechanical cost/Computational costl
- Build the spanning trees॥
- Move along the shortest pathl
- Merge the trees
- DFS/bDFSI
- Not all linearl
- Exercisell

Different model

- Vertices/Edges have been markedI
- As a landmarkI
- Assume: This is not possible! How to distinguish?
- Vertices cannot be distinguished immediately!!
- Local order of the edges is givenl
- May be not a planar embedding!
- Given: $G=(V, E, S), S$ cyclic orders!

Different model, local order

I

From different vertices, permutation! Locally fixedl

Mapping problem!

- Determine the graph (for navigation!)
- Store all given informationl
- Marker/pebble is necessaryll

One-Marker Algorithm (Dudek et al.)

- Maintain known graph S
- List L of adjacent unknown edgesl
- Choose edge $e \in L$ from some $b \in S$ ■
- Visits vertex ull
- Put pebble/marker at u ll
- Search in S from b for the pebble \|
- If marker was not found, add edge (b, u) and vertex u to S I
- Insert the adjacent edges from u into $L \|$
- If marker has been found at known vertex $v=u$, try to search for the edge $e=(b, v)$ by the order from b
- For this: Place marker onto b, move to b and then in S back to $v=u$ along shortest path
- Check the outgoing edges forl
- One will be the right one! Update S !
- Pseudocode! Exercise!

Analysis: One-Marker Algorithmus

- Mechanical cost: Number of steps!!!
- Assumption: No loops!!
- Set the marker $O(1)$
- Search for the marker: DFS on vertices $2\left|V_{S}\right|$
- Bring the marker back, move back: $2\left|V_{S}\right| \boldsymbol{\|}$
- Do this for all possible edges: $O(|E| \times|V|) \|$

Analysis: One-Marker Algorithm

- Computational cost: Offline!
- Shortest path in graphs॥
- Dijkstra: $O\left(\left|E_{S}\right|+\left|V_{S}\right| \log \left|V_{S}\right|\right)$ I
- For any edgel
- $O\left(|E|^{2}+|E||V| \log |V|\right) \mid$

Graph-exploration

- Labyrinths, grid-graphs, gridpolygons, general graphs
- Graph-exploration: DFS and LB of 2
- Gridpolygons: Simple/general
- SmartDFS $\frac{4}{3}$, LB $\frac{7}{6}$
- STC Alg. $|C|+|B|$
- Tether/Accumulator/Depth variants: $\Theta(|E|+|V| / \alpha)$
- Marker Algorithm
- Online TSP for planar graphs!

Kap. 2: Polygonal environments

- Set of disjoint simple polygons in the planel
- Boundary polygoni
- Different tasks: Searching for a goal/escape from a labyrinth
- Different sensor modelsI
- First: Touch sensor, precise odometry, escape from a labyrinth

Escape from a labyrinth: Model

- Point-shaped agentI
b Touch sensorl
- Follow the wall
- Follow a direction (exact)
- Count rotational angles, in totall
- No further memoryll

Pledge Algorithm

1. Choose angle φ, rotate agent heading in this direction.ll
2. Move into direction φ, until agent reaches the boundary.ll
3. Move right and keep in contact with the wall, Left-Hand.II
4. Follow the wall by Left-Hand-Rule and sum up the rotational angles, until the overall rotational angle attains value zero, now GOTO (2).I

Pledge Algorithm

- Angular counter $\bmod 2 \pi=0$, not sufficient
- Only Left-Hand-Rule not sufficientl

Correctness, structural properties, non-negative counter

Lemma The angular counter of the Pledge Algorithm is never positive.

Proof:I

- Zero at the beginningl
- Zero, when the boundary is leftI
- Right turn after hitting the boundary \Rightarrow negativel
- Continuous change, zero \Rightarrow movement is possiblel

Correctness, no-success, finite path repeated

Lemma If the agent does not leave the labyrinth, after a while the agent repeatedly follows the same finite path, Π_{\circ}, again and again. Proof:I

- Path is a polygonal chainl
- Vertices I: Vertices of the polygonsll
- Vertices II: Hit-Points on the edges II
- Correspond to vertices of type II
- Finite set S of possible vertices of the pathl
- The same counter value at the same vertex \Rightarrow the same path again and again
- Assume: Never the same valuel
- Case 1: After a while, keeping on the boundary \Rightarrow always the same path along one polygon
- Case 2: Leaving more than $|S|$ times (infinitely often)
- \Rightarrow at least twice with the same value 0 at the same vertex, contradiction!

Correctness: Π_{\circ} no self-intersection

Lemma Asumme the agent does not leave the labyrinth by Pledge and let Π_{\circ} be the repeated path. Π_{\circ} has no self-intersections.

Difference: Intersection/Touching

Intersection only at the boundary! All free paths run in parallel!!

Correctness: Π_{\circ} no self-intersection

- Proof: Ass. Intersection! Two parts one of which is free, say $B \|$
- Shortly behind z angular counter $C_{A}\left(z^{\prime}\right), C_{B}\left(z^{\prime}\right)$ I
- $C_{B}\left(z^{\prime}\right)=-\beta$ and $C_{A}\left(z^{\prime}\right)=-\beta+2 k \pi$ for $k \in Z \|$

Correctness: Π_{\circ} no self-intersection

- $C_{B}\left(z^{\prime}\right)=-\beta$ and $C_{A}\left(z^{\prime}\right)=-\beta+2 k \pi$ for $k \in Z$
- $k=0$? A and B are the same! Contradiction!
- $k>0$? Lemma, $C_{A}\left(z^{\prime}\right)$ negativel
- Means $k<0$ and $C_{A}(p)<C_{B}(p)$ for all p from z^{\prime} to $z^{\prime \prime}$
- Path B leaves the obstacle first, no intersection!!!!

Correctness proof

Theorem For any labyrinth and any starting position the pledge-algorithm will leave the labyrinth, if this is possible. Proof:I

- Ass.: Agent does not reach the boundaryll
- Lemma Path Π_{\circ} again and again
- Lemma No intersectionsl
- Orientations of $\Pi_{0}: 1$) cw-order 2) ccw-orderll
- 2) $+2 \pi$ per full round, finally positive, contradictionl
- Means 1) -2π per full roundl
- Remains negative after a while. Moves around obstacle!
- Orientation: cw-order, Left-Hand \Rightarrow Enclosed!!

Pledge algorithm with sensor errors

- Possible errors?
- Left-Hand-Rule, stable! ॥
- Counting rotational angles! ॥
- Hold the direction in the free space!
- For example: Compass! ॥
- Full turns ok, but not precisely! |l
- Leave the obstacle slightly too early or
 too late! \|
- The main direction can be hold!
- Still correct?

