Online Motion Planning MA-INF 1314 Graphexploration/Marker

Elmar Langetepe University of Bonn

Repetition: CFS Algorithm Invariants Lemma

Execution CFS-Algorithm, properties hold:

- i) Any incomplete vertex belongs to a tree in \mathcal{T} .
- ii) There is always an incomplete vertex with $v \in V^*$ with $d_{G^*}(s,v) \leq r$, until $G^* \neq G$.
- iii) For any chosen root vertex s_i : $d_{G^*}(s, s_i) \leq r$.
- iv) After pruning T_i is fully explored by DFS. All trees $T \in \mathcal{T}$ have size $|T| \ge \frac{\alpha r}{4}$.
- v) All trees $T \in \mathcal{T}$ are disjoint (w.r.t. edges)
- Proof: i) and v) simply hold by construction

Rep Analysis Theorem/Corollary

CFS-Algorithm known depth $r \left(4 + \frac{8}{\alpha}\right)$ -competitive/cost $\Theta(|E| + |V|/\alpha)$.

über Teilbäume T_R

- Subtree T_R , cost
- $K_1(T_R)$: path from s to s_i in G^*
- $K_2(T_R)$: DFS, $K_3(T_R)$: bDFS (Graph!)
- $\sum_{T_R} K_3(T_R) \leq 2 \cdot |E|$ bDFS global
- $\sum_{T_R} K_2(T_R) = \sum_{T_R} 2 \cdot |T_R| \le 2 \cdot |E|$, DFS, disjoint
- $\sum_{T_R} K_1(T_R) \le \sum_{T_R} 2r \le \frac{8}{\alpha} \sum_{T_R} |T_R| \le \frac{8}{\alpha} |E|$

Rep: Graphexploration, unknown depth r

- Doubling-Heuristic: $O(|E| + \log r|V|)$ steps Schritte, **Corollary**
- Adjust prune/explore with current value $d_{G^*}(s, s_i)$
- prune $(T_i, s_i, \frac{\alpha d_{G^*}(s,s_i)}{4}, \frac{9\alpha d_{G^*}(s,s_i)}{16})$
- explore(\mathcal{T} , T_i , s_i , $(1 + \alpha)d_{G^*}(s, s_i)$)
- Lemma iv): Rest of T_i fully explored by DFS, all $T \in \mathcal{T}$ have size $|T| \geq \frac{d_{G^*}(s,T)\alpha}{4}$
- Theorem/Corollary CFS-Algorithm unknown depth R is $(4 + \frac{8}{\alpha})$ -competitive/has cost $\Theta(|E| + |V|/\alpha)$

Look-ahead $\alpha \cdot r$ necessary

Lower bound $\Omega(|E|^{1+\epsilon})$ Offline accumulator variant, if look-ahead is smaller than linear in r (constant).

- 2r is not sufficient: At least 2r + 1!
- With 2r + o(r) not efficient! (small-o notation!)
- Graph: path and clique, beyond linear
- Accumulator size n + f(n): $\Omega\left(\frac{n^3}{f(n)}\right)$ Schritte!
- $|E| \in C \cdot n^2$, $f(n) = n^{1-\epsilon}$
- Conjecture: r + o(r) is not sufficient for tether variant. Open!!

Look-ahead $\alpha \cdot r$ necessary

Lemma For the accumulator variant with accumulator size of 2r + d for constant d there are examples where $\Omega(|E|^{\frac{3}{2}})$ exploration steps are necessary.

Proof: Blackboard!

Note: It can still be competitive!

Offline cost?

- Mechanical cost/Computational cost
- Build the spanning trees
- Move along the shortest path
- Merge the trees
- DFS/bDFS
- Not all linear
- Exercise

Different model

- Vertices/Edges have been marked
- As a landmark
- Assume: This is not possible! How to distinguish?
- Vertices cannot be distinguished immediately!
- Local order of the edges is given
- May be not a planar embedding!
- Given: G = (V, E, S), S cyclic orders!

Different model, local order

From different vertices, permutation! Locally fixed

Mapping problem!

- Determine the graph (for navigation!)
- Store all given information
- Marker/pebble is necessary

One-Marker Algorithm (Dudek et al.)

- \bullet Maintain known graph $S{{\scriptstyle I\!\!I}}$
- List L of adjacent unknown edges
- \bullet Choose edge $e \in L$ from some $b \in S$
- Visits vertex u
- Put pebble/marker at u
- Search in S from b for the pebble ${\color{black}\blacksquare}$
- \bullet If marker was not found, add $\mathsf{edge}(b,u)$ and vertex u to S .
- \bullet Insert the adjacent edges from u into L
- If marker has been found at known vertex v = u, try to search for the edge e = (b, v) by the order from b
- For this: Place marker onto b, move to b and then in S back to v = u along shortest path

- Check the outgoing edges for
- \bullet One will be the right one! Update $S!{{\rule[0.5ex]{1.5ex}{1.5ex}}}$
- Pseudocode! Exercise!

Analysis: One-Marker Algorithmus

- Mechanical cost: Number of steps!!
- Assumption: No loops!
- Set the marker O(1)
- Search for the marker: DFS on vertices $2|V_S|$
- Bring the marker back, move back: $2|V_S|$
- \bullet Do this for all possible edges: $O(|E|\times |V|){{\tt I}}$

Analysis: One-Marker Algorithm

- Computational cost: Offline!
- Shortest path in graphs
- Dijkstra: $O(|E_S| + |V_S| \log |V_S|)$
- For any edge
- $O(|E|^2 + |E||V|\log|V|)$

Graph-exploration

- Labyrinths, grid-graphs, gridpolygons, general graphs
- ► Graph-exploration: DFS and LB of 2
- Gridpolygons: Simple/general
- SmartDFS $\frac{4}{3}$, LB $\frac{7}{6}$
- STC Alg. |C| + |B|
- Tether/Accumulator/Depth variants: $\Theta(|E| + |V|/\alpha)$
- Marker Algorithm
- Online TSP for planar graphs!

Kap. 2: Polygonal environments

- Set of disjoint simple polygons in the plane
- Boundary polygon
- Different tasks: Searching for a goal/escape from a labyrinth
- Different sensor models
- First: Touch sensor, precise odometry, escape from a labyrinth

Escape from a labyrinth: Model

- Point-shaped agent
- Touch sensor
- Follow the wall
- Follow a direction (exact)
- Count rotational angles, in total
- No further memory

Pledge Algorithm

- 1. Choose angle φ , rotate agent heading in this direction.
- **2**. Move into direction φ , until agent reaches the boundary.
- 3. Move right and keep in contact with the wall, Left-Hand.
- 4. Follow the wall by Left-Hand-Rule and sum up the rotational angles, until the overall rotational angle attains value zero, now GOTO (2).

Pledge Algorithm

- Angular counter mod $2\pi = 0$, not sufficient
- Only Left-Hand-Rule not sufficient

Correctness, structural properties, non-negative counter

Lemma The angular counter of the Pledge Algorithm is never positive.

Proof:

- Zero at the beginning
- Zero, when the boundary is left
- Right turn after hitting the boundary \Rightarrow negative
- Continuous change, zero \Rightarrow movement is possible

Correctness, no-success, finite path repeated Lemma If the agent does not leave the labyrinth, after a while the agent repeatedly follows the same finite path, Π_o , again and again. Proof:

- Path is a polygonal chain
- Vertices I: Vertices of the polygons
- Vertices II: Hit-Points on the edges
- Correspond to vertices of type I
- Finite set S of possible vertices of the path
- The same counter value at the same vertex ⇒ the same path again and again
- Assume: Never the same value

- Case 1: After a while, keeping on the boundary ⇒ always the same path along one polygon
- Case 2: Leaving more than |S| times (infinitely often)
- ⇒ at least twice with the same value 0 at the same vertex, contradiction!

Correctness: Π_{\circ} no self-intersection

Lemma Asumme the agent does not leave the labyrinth by Pledge and let Π_{\circ} be the repeated path. Π_{\circ} has no self-intersections.

Difference: Intersection/Touching

Intersection only at the boundary! All free paths run in parallel!

Correctness: Π_{\circ} no self-intersection

- Proof: Ass. Intersection! Two parts one of which is free, say B
- Shortly behind z angular counter $C_A(z')$, $C_B(z')$
- $C_B(z') = -\beta$ and $C_A(z') = -\beta + 2k\pi$ for $k \in Z$

Correctness: Π_{\circ} no self-intersection

- $C_B(z') = -\beta$ and $C_A(z') = -\beta + 2k\pi$ for $k \in Z$
- k = 0? A and B are the same! Contradiction!
- k > 0? Lemma, $C_A(z')$ negative
- Means k < 0 and $C_A(p) < C_B(p)$ for all p from z' to z''
- Path *B* leaves the obstacle first, no intersection!!!

Correctness proof

Theorem For any labyrinth and any starting position the pledge-algorithm will leave the labyrinth, if this is possible.

- Ass.: Agent does not reach the boundary
- Lemma Path Π_{o} again and again
- Lemma No intersections
- Orientations of Π_{\circ} : 1) cw-order 2) ccw-order
- 2) $+2\pi$ per full round, finally positive, contradiction
- Means 1) -2π per full round
- Remains negative after a while. Moves around obstacle!
- Orientation: cw-order, Left-Hand \Rightarrow Enclosed!

Pledge algorithm with sensor errors

- Possible errors?
- Left-Hand-Rule, stable!
- Counting rotational angles!
- Hold the direction in the free space!
- For example: Compass!
- Full turns ok, but not precisely!
- Leave the obstacle slightly too early or too late!
- The main direction can be hold!
- Still correct?

