
ONLINE ROUTING IN TRIANGULATIONS∗

PROSENJIT BOSE† AND PAT MORIN†

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 4, pp. 937–951

Abstract. We consider online routing algorithms for routing between the vertices of embedded
planar straight line graphs. Our results include (1) two deterministic memoryless routing algorithms,
one that works for all Delaunay triangulations and the other that works for all regular triangula-
tions; (2) a randomized memoryless algorithm that works for all triangulations; (3) an O(1) memory
algorithm that works for all convex subdivisions; (4) an O(1) memory algorithm that approximates
the shortest path in Delaunay triangulations; and (5) theoretical and experimental results on the
competitiveness of these algorithms.

Key words. routing, online algorithms, Delaunay triangulations, shortest path, spanning path

AMS subject classifications. 65D18, 90B18

DOI. 10.1137/S0097539700369387

1. Introduction. Path finding, or routing, is central to a number of fields, in-
cluding geographic information systems, urban planning, robotics, and communica-
tion networks. In many cases, knowledge about the environment in which routing
takes place is not available beforehand, and the vehicle/robot/packet must learn this
information through exploration. Algorithms for routing in these types of environ-
ments are referred to as online [3] routing algorithms.

In this paper we consider online routing in the following abstract setting: The
environment is a planar straight line graph [17], T , with n vertices, whose edges
are weighted by the Euclidean distance between their endpoints, the source vsrc and
destination vdst are vertices of T , and a packet can only move on edges of T . Initially,
a packet only knows vsrc, vdst, and N (vsrc), where N (v) denotes the set of vertices
adjacent to v.

We classify online routing algorithms based on their use of memory and/or ran-
domization. Define vcur as the vertex at which the packet is currently stored. A
routing algorithm is called memoryless if the next step taken by a packet depends
only on vcur, vdst, and N (vcur). An algorithm is randomized if the next step taken by
a packet is chosen randomly from N (vcur). A randomized algorithm is memoryless
if the distribution used to choose from N (vcur) is a function only of vcur, vdst, and
N (vcur).

The justification for studying the memory requirements of routing algorithms
comes from communication networks, in which memory used by an algorithm results
in header information that travels with a packet. Since this information is used only
for routing purposes and is of no use to the sender or receiver, it effectively produces
a decrease in communication bandwidth.

For an algorithm A we say that a graph defeats A if there is a source/destination
pair such that a packet never reaches the destination when beginning at the source.
If A finds a path P from vsrc to vdst, we call P the A path from vsrc to vdst. Here

∗Received by the editors March 15, 2000; accepted for publication (in revised form) January 28,
2004; published electronically May 25, 2004. This research was supported by the Natural Sciences
and Engineering Research Council of Canada.

http://www.siam.org/journals/sicomp/33-4/36938.html
†School of Computer Science, Carleton University, 1125 Colonel By Dr., Ottawa, Canada,

K1S 5B6 (jit@scs.carleton.ca, morin@cs.carleton.ca).

937

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

938 PROSENJIT BOSE AND PAT MORIN

we use the term path in an intuitive sense rather than a strict graph theoretic sense,
since P may visit the same vertex more than once.

In this paper we also consider, as a special case, a class of “well-behaved” trian-
gulations. The Voronoi diagram [16] of S is a partitioning of space into cells such
that all points within a Voronoi cell are closer to the same element p ∈ S than any
other point in S. The Delaunay triangulation is the straight line face dual of the
Voronoi diagram; i.e., two points in S have an edge between them in the Delaunay
triangulation if their Voronoi cells have an edge in common.

In this paper we consider several different routing algorithms and compare their
performance empirically. In particular, we describe

1. a memoryless algorithm that is not defeated by any Delaunay triangulation;
2. a memoryless algorithm that is not defeated by any regular triangulation;
3. a memoryless randomized algorithm that uses 1 random bit per step and is

not defeated by any triangulation;
4. an algorithm that only remembers a constant number of vertex locations that

is not defeated by any convex subdivision (we say that such an algorithm uses O(1)
memory);

5. an algorithm for Delaunay triangulations that uses O(1) memory in which a
packet never travels more than a constant times the Euclidean distance between vsrc

and vdst; and
6. a theoretical and empirical study of the quality (length) of the paths found

by these algorithms.

The first four routing algorithms are described in section 2. Section 3 presents
theoretical and empirical results on the length of the paths found by these algorithms
and describes our algorithm for Delaunay triangulations. A discussion of related
work is provided in section 4. Finally, section 5 summarizes our results and describes
directions for future research.

2. Four simple algorithms. In this section we describe four online routing
algorithms and prove theorems about which types of graphs never defeat them. We
begin with the simplest (memoryless) algorithms and proceed to the more complex
algorithms.

However, before beginning we should note that deterministic memoryless algo-
rithms have some inherent limitations. Consider what happens when such an algo-
rithm tries to route from one of the vertices of the outer face to vdst in the graphs
shown in Figure 2.1. In each of these graphs, the neighborhoods of the corner vertices
look the same. Therefore, any deterministic memoryless algorithm must make the
same decisions at the corners in each of the graphs. There are then four cases to
consider.

1. At all three corners, the algorithm chooses to use an edge of the convex hull.
In this case, the algorithm will fail on the graph in Figure 2.1.a since it will
never enter the interior of the convex hull and will therefore never reach vdst.

2. At two of the corners, the algorithm chooses to use an edge of the convex hull
and at the third corner it does not. We can assume, without loss of generality
that the third corner is the bottom right corner. In this case, the algorithm
will fail on the graph shown in Figure 2.1.b since the only way to reach vdst

from the convex hull is via one of the two paths in the other two corners.
3. At one of the corners, the algorithm chooses to use an edge of the convex

hull and at the other two corners it does not. We may assume without loss
of generality that the corner that uses the interior edge is the top corner. In

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

ONLINE ROUTING IN TRIANGULATIONS 939

vdst

vsrc

vdst

vsrc

vdst

vsrc

(a) (b) (c)

Fig. 2.1. No deterministic memoryless routing algorithm can work for all 2-connected graphs.

vdst

vsrc

vdst

vsrc

(a) (b)

Fig. 2.2. Triangulations that defeat the greedy routing algorithm.

this case, the algorithm will fail on the graph in Figure 2.1.c since it will get
trapped cycling among the edges shown in bold.

4. At all of the corners, the algorithm chooses not to use an edge of the convex
hull. In this case the algorithm will also fail on the graph in Figure 2.1.c for
the same reasons as in case 3.

Since the graphs in Figure 2.1 are all 2-connected we have the following negative
result.

Lemma 2.1. No deterministic memoryless algorithm works for all 2-connected
planar graphs.

2.1. Greedy routing. The greedy routing algorithm always moves the packet
to the neighbor gdy(vcur) of vcur that minimizes dist(gdy(vcur), vdst), where dist(p, q)
denotes the Euclidean distance between p and q. In the case of ties, one of the vertices
is chosen arbitrarily. The greedy routing algorithm can be defeated by a triangulation
T in two ways (the first way is an important special case of the second): (1) the packet
can get trapped moving back and forth on an edge of the triangulation (Figure 2.2.a),
or (2) the packet can get trapped on a cycle of three or more vertices (Figure 2.2.b).
However, as the following theorem shows, neither of these situations can occur if T is
a Delaunay triangulation.

Theorem 2.2. There is no point set whose Delaunay triangulation defeats the
greedy routing algorithm.

Proof. We proceed by showing that every vertex v of T has a neighbor that is
strictly closer to vdst than v is. Thus, at each routing step, the packet gets closer to
vdst and therefore, after at most n steps, reaches vdst. Refer to Figure 2.3.

Consider the Voronoi diagram [16] VD(T) of the vertices of T and let e be the
first edge of VD(T) intersected by the directed line segment (v, vdst). Note that e is on
the boundary of two Voronoi cells, one for v and one for some other vertex u, and the

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

940 PROSENJIT BOSE AND PAT MORIN

v vdst

hu

u

hv

Fig. 2.3. The proof of Theorem 2.2.

vdst

vsrc

Fig. 2.4. A triangulation that defeats the compass routing algorithm.

supporting line of e partitions the plane into two open half planes hv = {p : dist(p, v) <
dist(p, u)} and hu = {p : dist(p, u) < dist(p, v)}. Since the Voronoi diagram is the
straight line face dual of the Delaunay triangulation, the edge (u, v) ∈ T . Also, by
the choice of e, vdst ∈ hu, i.e., dist(u, vdst) < dist(v, vdst).

2.2. Compass routing. The compass routing algorithm always moves the packet
to the vertex cmp(vcur) that minimizes the angle � vdst, vcur, cmp(vcur) over all ver-
tices adjacent to vcur. Here the angle is taken to be the smaller of the two angles as
measured in the clockwise and counterclockwise directions. In the case of ties, one of
the (at most 2) vertices is chosen using some arbitrary deterministic rule.

One might initially believe (as we did) that compass routing can always be used
to find a path between any two vertices in a triangulation. However, the triangulation
in Figure 2.4 defeats compass routing. When starting from one of the vertices on the
outer face of T , and routing to vdst, the compass routing algorithm gets trapped on
the cycle shown in bold. The following lemma shows that any triangulation that
defeats compass routing causes the packet to get trapped in a cycle.

Lemma 2.3. Let T be a triangulation that defeats compass routing, and let vdst

be a vertex such that compass routing fails to route a packet to vdst when given some
other vertex as the source. Then there exists a cycle C = v0, . . . , vk−1 (k ≥ 3) in T
such that cmp(vi) = vi+1 for all 0 ≤ i < k.1

Proof. Since T defeats compass routing, and the compass routing algorithm makes
the same decision each time it visits a vertex, either there is an edge (u, v) such that
cmp(u) = v and cmp(v) = u, or there is the situation described in the lemma. We
prove that there can be no such edge (u, v). Suppose such an edge (u, v) does exist.

1Here and henceforth, all subscripts are assumed to be taken modk.

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

ONLINE ROUTING IN TRIANGULATIONS 941

R1

R2

R3

u v

vdst

Fig. 2.5. The proof of Lemma 2.3.

vi−1 vi
vi+1

w vdst

Fig. 2.6. The proof of Lemma 2.4.

Then there is a triangle (u, v, w) in T such that w is in the same half plane bounded
by the line through u and v as vdst. Referring to Figure 2.5, the vertex w must be in
one of the regions 1, 2, or 3. But this is a contradiction, since if w is in region 1, then
cmp(v) = w; if w is in region 2, then cmp(u) = w (and cmp(v) = w); and if w is in
region 3, then cmp(u) = w.

We call such a cycle, C, a trapping cycle in T for vdst. Next we characterize
trapping cycles in terms of a visibility property of triangulations. Let t1 and t2 be
two triangles in T . Then we say that t1 obscures t2 with respect to viewpoint vdst if
there exists a ray originating at vdst that strikes t1 first and then t2. Let u and v be
any two vertices of T such that cmp(u) = v. Then define �uv as the triangle of T that
is contained in the closed half plane bounded by the line through uv, that contains
the edge uv, and that contains vdst. We obtain the following useful characterization
of trapping cycles.

Lemma 2.4. Let T be a triangulation that defeats compass routing and let C =
v0, . . . , vk−1 be a trapping cycle in T for vertex vdst. Then �vivi+1 is either identical
to or obscures �vi−1vi for all 0 ≤ i < k.

Proof. Refer to Figure 2.6. Assume that �vivi+1 and �vi−1vi are not identical;
otherwise the lemma is trivially true. Let w be the third vertex of �vivi+1. Then
w cannot lie in the cone defined by vdst, vi, and vi+1; otherwise we would have
cmp(vi) = w. But then the line segment joining w and vi+1 obscures vi and hence
�vivi+1 obscures �vi−1vi.

A regular triangulation [18] is a triangulation obtained by orthogonal projection
of the faces of the lower hull of a three-dimensional polytope onto the plane. Note
that the Delaunay triangulation is a special case of a regular triangulation in which
the vertices of the polytope all lie on a paraboloid. Edelsbrunner [8] showed that if
T is a regular triangulation, then T has no set of triangles that obscure each other
cyclically from any viewpoint. This result, combined with Lemma 2.4, yields our
main result on compass routing.

Theorem 2.5. There is no regular triangulation that defeats the compass routing
algorithm.

2.3. Randomized compass routing. In this section, we consider a randomized
routing algorithm that is not defeated by any triangulation. Let cw(v) be the vertex in

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

942 PROSENJIT BOSE AND PAT MORIN

ccw(v)

cw(v)

vdst

v

Fig. 2.7. Definition of cw(v) and ccw(v).

v

vdst

ccw(v)
cw(v)

F

Fig. 2.8. The proof of Theorem 2.6.

N (v) that minimizes the clockwise angle � vdst, v, cw(v) and let ccw(v) be the vertex
in N (v) that minimizes the counterclockwise angle � vdst, v, ccw(v) (see Figure 2.7).
Then the randomized compass routing (RCR) algorithm moves the packet to one of
{cw(vcur), ccw(vcur)} with equal probability.

Before we can make statements about which triangulations defeat randomized
compass routing, we must define what it means for a triangulation to defeat a ran-
domized algorithm. We say that a triangulation T defeats a (randomized) routing
algorithm if there exists a pair of vertices vsrc and vdst of T such that a packet orig-
inating at vsrc with destination vdst has probability 0 of reaching vdst in any finite
number of steps. Note that proving that a triangulation T does not defeat a memory-
less routing algorithm implies that a packet reaches its destination with probability 1.

It is well known that a random walk will eventually visit every vertex of a con-
nected graph. Thus, a random walk is a randomized routing algorithm that is not
defeated by any connected graph. However, this result is not satisfactory for two
reasons: (1) Because a random walk does not take the destination into account, the
path it takes is by no means direct, and (2) the number of random bits required at
each step of a random walk is log dcur, where dcur is the degree of the current vertex.
In contrast, randomized compass routing requires only 1 bit at each step and is more
likely to take a direct path to the destination vertex.

The following theorem shows the versatility of randomized compass routing.

Theorem 2.6. There is no triangulation that defeats the randomized compass
routing algorithm.

Proof. Assume, by way of contradiction that a triangulation T exists that defeats
the randomized compass routing algorithm. Then there is a vertex vdst of T and a
minimal set S of vertices such that (1) vdst /∈ S, (2) the subgraph H of T induced by
S is connected, and (3) for every v ∈ S, cw(v) ∈ S and ccw(v) ∈ S.

Refer to Figure 2.8 for what follows. The vertex vdst lies in some face F of H. Let
v be a vertex on the boundary of F such that the line segment (v, vdst) is contained in
F . Such a vertex is guaranteed to exist [5]. The two neighbors of v on the boundary of

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

ONLINE ROUTING IN TRIANGULATIONS 943

F must be cw(v) and ccw(v), and these cannot be the same vertex (since F contains
(v, vdst) in its interior). Note that, by the definitions of cw(v) and ccw(v), and by
the fact that T is a triangulation, the triangle (cw(v), v, ccw(v)) is in T . But this is
a contradiction, since then v is not on the boundary of F .

2.4. Right-hand routing. The folklore “right-hand rule” for exploring a maze
states that if a player in a maze walks around never lifting her right-hand from the
wall, then she will eventually visit every wall in the maze. More specifically, if the
maze is the face of a connected planar straight line graph, the player will visit every
edge and vertex of the face [2].

Let T be any convex subdivision. Consider the planar subdivision T ′ obtained
by deleting from T all edges that properly intersect the line segment joining vsrc and
vdst. Because of convexity, T ′ is connected, and vsrc and vdst are on the boundary of
the same face F of T ′. The right-hand routing algorithm uses the right-hand rule on
the face F to route from vsrc to vdst. Right-hand routing is easily implemented using
only O(1) additional memory by remembering vsrc, vdst, and the last vertex visited.

Theorem 2.7. There is no convex subdivision that defeats the right-hand routing
algorithm.

3. Competitiveness of paths. Thus far we have considered only the question
of whether routing algorithms can find a path between any two vertices in T . An
obvious direction for research is to consider the length of the path found by a routing
algorithm. We say that a routing algorithm A is c-competitive for T if for any pair
(vsrc, vdst) in T , the length (sum of the edge lengths) of the path between vsrc and
vdst found by A is at most c times the length of the shortest path between vsrc and
vdst in T . In the case of randomized algorithms, we use the expected length of the
path. We say that A has a competitive ratio of c if it is c-competitive.

This section addresses questions about the competitive ratio of the algorithms
described so far, as well as a new algorithm specifically targeted for Delaunay trian-
gulations. We present theoretical as well as experimental results.

3.1. Negative results. It is not difficult to contrive triangulations for which
none of our algorithms is c-competitive for any constant c. Thus it is natural to
restrict our attention to a well-behaved class of triangulations. Unfortunately, even
for Delaunay triangulations none of the algorithms described so far is c-competitive.

Theorem 3.1. There exist Delaunay triangulations for which none of the greedy,
compass, randomized compass, or right-hand routing algorithms is c-competitive for
any constant c.

Proof. We begin with greedy routing. Consider the set of points that are placed
on a circle and then triangulated to obtain the zig-zag triangulation T shown in
Figure 3.1.a. Since the points are cocircular, this is a valid Delaunay triangulation.
The points are placed so that each vertex v has a neighbor on the opposite side of the
line through vsrc and vdst that is closer to vdst than v’s two neighbors on the same
side of the line.

Note that there exists a path between vsrc and vdst of length approximately (π/2)·
dist(vsrc, vdst), and this is therefore an upper bound on the length of the shortest path
between vsrc and vdst. The length of the “zig-zag” path that uses the diagonals of T
between vsrc and vdst is Θ(n) ·dist(vsrc, vdst), and this is the path taken by the greedy
routing algorithm. Thus, greedy routing is not c-competitive for this triangulation.

To show that compass routing is not c-competitive, we again consider a set of
cocircular points and make a zig-zag triangulation. Let vcur be any point on the

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

944 PROSENJIT BOSE AND PAT MORIN

...vsrc vdst vsrc vdst

vcur
u
α

β
γ

β

π − 2β

vsrc vdst

(a) (b) (c)

Fig. 3.1. The proof of Theorem 3.1.

circle with diameter vsrc, vdst. Consider the angle α between the tangent line passing
through vcur and the line through vsrc and vdst. Compare this with the angle between
the line perpendicular to vsrc and vdst that passes through vcur and the line through
vsrc and vdst. Referring to Figure 3.1.b, we have

α = π/2 − β,(3.1)

γ = π/2 − 2β,(3.2)

and therefore γ + β = π/2 − β = α, i.e., the two angles are equal. Thus if compass
routing were to choose between the tangent line and the line crossing the circle, it
would be a tie. Now, by placing a point u on the circle close to vcur we can make
� u, vcur, vdst = α− ε for arbitrarily small ε > 0. Similarly, by placing a point vnxt on
the opposite side of the circle we can make � vnxt, vcur, vdst = α− ε− δ for arbitrarily
small δ > 0, so that cmp(vcur) = vnxt. Since ε and δ can be arbitrarily small, we can
repeat this construction as often as we like, thereby making the compass routing path
arbitrarily long.

To see that randomized compass routing and right-hand routing are not c-competi-
tive, consider a configuration of points like that in Figure 3.1.c. By making vsrc and
vdst almost collinear with a third point, it is possible to produce arbitrarily long thin
triangles that make the length of the path found by right-hand routing arbitrarily
long. Furthermore, in this configuration the probability that the randomized compass
routing path is the same as the right-hand path is 1/2, and thus the expected length
of the randomized compass path can be arbitrarily large.

3.2. A c-competitive algorithm for Delaunay triangulations. Since none
of the algorithms described in section 2 is competitive, even for Delaunay triangula-
tions, an obvious question is whether there exists any algorithm that is competitive
for Delaunay triangulations. In this section we answer this question in the affirma-
tive. In fact, we prove an even stronger result by giving an algorithm that finds a
path whose cost is at most a constant times dist(vsrc, vdst).

Our algorithm is based on the remarkable proof of Dobkin, Friedman, and Supowit
[7] that the Delaunay triangulation approximates the complete Euclidean graph to
within a constant factor in terms of shortest path length. In the following we will use
the notation x(p) (resp., y(p)) to denote the x-coordinate (resp., y-coordinate) of the
point p and the notation |X| to denote the Euclidean length of the path X.

Consider the directed line segment from vsrc to vdst. This segment intersects
regions of the Voronoi diagram in some order, say R0, . . . , Rm−1, where R0 is the
Voronoi region of vsrc and Rm−1 is the Voronoi region of vdst. The Voronoi routing
algorithm for Delaunay triangulations moves the packet from vsrc to vdst along the

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

ONLINE ROUTING IN TRIANGULATIONS 945

vsrc

vdst

b1 b2 b3

b4

b5

Fig. 3.2. A path obtained by the Voronoi routing algorithm.

vsrc vdst

Fig. 3.3. The Voronoi routing algorithm is not c-competitive for all Delaunay triangulations.

path v0, . . . , vm−1, where vi is the site defining Ri. An example of a path obtained by
the Voronoi routing algorithm is shown in Figure 3.2. Since the Voronoi region of a
vertex v can be computed given only the neighbors of v in the Delaunay triangulation,
it follows that the Voronoi routing algorithm is an O(1) memory routing algorithm.

The Voronoi routing algorithm on its own is not c-competitive for all Delaunay
triangulations, as can be seen from Figure 3.3.

However, it does have some properties that allow us to derive a c-competitive
algorithm. As with right-hand routing, let T ′ be the graph obtained from T by
removing all edges of T that properly intersect the segment (vsrc, vdst), and let F be
the face of T ′ that contains both vsrc and vdst. Assume without loss of generality
that vsrc and vdst both lie on the x-axis and that x(vsrc) < x(vdst). The following two
lemmas follow from the work of Dobkin, Friedman, and Supowit [7].

Lemma 3.2. The Voronoi path is x-monotone, i.e., x(vi) < x(vj) for all i < j.

Lemma 3.3. Let P ′ be the collection of maximal subpaths of v0, . . . , vm−1 that re-
main above the x-axis, i.e., P ′ = {vi, . . . , vj : y(vi−1) < 0 and y(vj+1) < 0 and y(vk) ≥
0 for all i ≤ k ≤ j}. Then

∑
X∈P ′ |X| ≤ (π/2) · dist(vsrc, vdst).

Let b0, . . . , bl−1 be the subsequence of vertices of v0, . . . , vm−1 that are above or
on the segment (vsrc, vdst). (Refer to Figure 3.2.) Consider two vertices bi = vj and
bi+1 = vk, where k �= j + 1; i.e., the Voronoi path between bi and bi+1 is not a direct
edge. Let PV = (bi = p0, . . . , px = bi+1) be the portion of the Voronoi path between
bi and bi+1 and let PF = (bi = q0, . . . , qy = bi+1) be the upper boundary of F between
bi and bi+1 (see Figure 3.4). Then the following holds.

Lemma 3.4. Let cdfs = (1 +
√

5)π2 .2 Then |PV | ≤ cdfs · (x(bi) − x(bi)) or |PF | ≤
cdfs · (x(bi) − x(bi)).

Proof. Let c0, . . . , cz be the lower convex hull of PF , and let Pj be the Voronoi

2We call cdfs the Dobkin–Friedman–Supowit constant [7].

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

946 PROSENJIT BOSE AND PAT MORIN

bi bi+1

p1 p2 p3 p4

q1
q2 q3

q4

vsrc vdst

PV

PF

Fig. 3.4. Definitions of PV and PF .

path from cj to cj+1. Dobkin et al. prove that

|PV | ≤ cdfs · (x(bi+1 − x(bi)) or

z−1∑

j=0

|Pj | ≤ cdfs · (x(bi+1 − x(bi)).(3.3)

We claim that this implies Lemma 3.4 and prove this by showing that Pj visits all
vertices of PF between cj and cj+1. Thus, by the triangle inequality,

|PF | ≤
z−1∑

j=0

|Pj |.(3.4)

Refer to Figure 3.5 for what follows. Assume for the sake of contradiction that there
is a vertex q in PF between cj and cj+1 that is not in Pj . As part of their proof,
Dobkin et al. show that Pj remains entirely above the segment (cj , cj+1). Therefore,
let Q be the polygon bounded by Pj and the segment (cj , cj+1). Since q is on PF

between cj and cj+1, it must be that q is contained in Q.
Since Q is monotone in the direction from cj to cj+1, it can be partioned into

trapezoids whose top sides are edges of Pj , whose bottom sides are on the line segment
(cj , cj+1), and whose left and right sides are perpendicular to (cj , cj+1). Refer to
Figure 3.5.

Let a and b be the two vertices of Pj that define the trapezoid containing q. We
claim that a and b cannot be consecutive on Pj because their Voronoi regions do not
share an edge that intersects (cj , cj+1). We will prove this by showing that in the
Voronoi diagram of q, a, and b the bisector of a and b does not intersect the segment
(cj , cj+1). This is sufficient, since this bisector contains the bisector of a and b in the
entire Voronoi diagram.

Let C be the circle with center on (cj , cj+1) and with a and b on its boundary. If
the bisector of a and b in the Voronoi diagram of q, a, and b intersects the segment
(cj , cj+1), then C must not contain q. However, C does contain the top, left, right,
and bottom sides of the trapezoid containing q. But this can’t be, since then C
contains the entire trapezoid and contains q. We conclude that there is no point q on
the boundary of F between cj and cj+1 that is not on Pj .

Our c-competitive routing algorithm will visit all the vertices b0, . . . , bl−1 in order.
If bi and bi+1 are consecutive on the Voronoi path (i.e., bi = vj and bi+1 = vj+1 for
some j), then our algorithm will use the Voronoi path (i.e., the direct edge) from
bi to bi+1. On the other hand, if bi and bi+1 are not consecutive on the Voronoi
path, then by Lemma 3.4, there exists a path from bi to bi+1 of length at most
cdfs · (x(bi+1) − x(bi)).

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

ONLINE ROUTING IN TRIANGULATIONS 947

cj

cj+1

a

b

q

C

Fig. 3.5. The proof of Lemma 3.4.

The difficulty occurs because the algorithm does not know beforehand which path
to take. The solution is to simulate exploring both paths “in parallel” and stopping
when the first one reaches bi+1.

3

More formally, let PV and PF be defined as in Lemma 3.4. The algorithm for
finding a path from bi to bi+1 is described by the following pseudocode.

1: j ← 0, l0 ← min{dist(p0, p1), dist(q0, q1)}.
2: repeat
3: Explore PF until reaching bi+1 or until reaching a vertex qx such that

|q0, . . . , qx+1| > 2lj . If bi+1 is reached, then quit; otherwise return to
bi.

4: j ← j + 1, lj ← |q0, . . . , qy+1|.
5: Explore PV until reaching bi+1 or until reaching a vertex py such that

|p0, . . . , py+1| > 2lj . If bi+1 is reached, then quit; otherwise return to
bi.

6: j ← j + 1, lj ← |p0, . . . , py+1|.
7: until bi+1 is reached

Lemma 3.5. Using the parallel search algorithm described above, a packet reaches
bi+1 after traveling a distance of at most 9 · cdfs · (x(bi+1)− x(bi)) ∼ 45.75 · (x(bi+1)−
x(bi)).

Proof. Clearly the algorithm reaches bi+1 in a finite number of steps, since lines 4
and 6 ensure that both paths advance by at least one edge at each iteration. Let k be
the maximum value of j, and let dj be the distance traveled during the jth exploration
step of the algorithm. Thus, the total distance d traveled by the packet is given by
d =

∑k
j=0 dj .

Since the algorithm did not terminate with j = k − 1, by Lemma 3.4 we have

dk < 2 · cdfs · (x(bi+1) − x(bi)).(3.5)

Similarly, since the algorithm did not terminate with j = k− 1 or j = k− 2, we have

lk−1 < 2 · cdfs · (x(bi+1) − x(bi)).(3.6)

3A similar algorithm for finding an unknown target point on a line is given by Baeza-Yates,
Culberson, and Rawlins [1]. See also Klein [12].

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

948 PROSENJIT BOSE AND PAT MORIN

Since lj ≥ 2lj−1 for each j > 0, we have

d ≤
k−1∑

j=0

2lj + dk(3.7)

≤
k−1∑

j=0

2lk−1/2
j + dk,(3.8)

which immediately yields a bound of 10 · cdfs · (x(bi+1) − x(bi)). To obtain a tighter
bound, we note that dk > cdfs · (x(bi+1)− x(bi)) implies lk−1 < cdfs · (x(bi+1)− x(bi)).
Subject to this constraint, (3.8) is maximized when lk−1 = 2 · cdfs · (x(bi+1) − x(bi)),
yielding

d ≤
k−1∑

j=0

4 · cdfs · (x(bi+1) − x(bi))/2
j + cdfs · (x(bi+1) − x(bi))(3.9)

< 9 · cdfs · (x(bi+1) − x(bi)).(3.10)

Given the positions of vdst and vsrc the parallel search algorithm described above
is easily implemented as part of an O(1) memory routing algorithm. We refer to the
combination of the Voronoi routing algorithm with this parallel search algorithm as
the parallel Voronoi routing algorithm.

Theorem 3.6. The parallel Voronoi routing algorithm produces a path whose
length is at most (9 · cdfs + π/2) · dist(vsrc, vdst).

Proof. The algorithm incurs two costs: (1) the cost of traveling on subpaths of
the Voronoi path that remain above the y-axis, and (2) the cost of applications of the
parallel search algorithm. By Lemma 3.3, the first cost is at most (π/2)·dist(vsrc, vdst).
By Lemma 3.5 and the fact that b0, . . . , bl−1 is x-monotone (Lemma 3.2), the cost of
the second is at most 9 · cdfs · dist(vsrc, vdst).

3.3. Empirical results. While it is sometimes possible to come up with patho-
logical examples of triangulations for which an algorithm is not competitive, it is often
more reasonable to use the competitive ratio of an algorithm on average or random
inputs as an indicator of how it will perform in practice. In this section we describe
some experimental results about the competitiveness of our algorithms. All exper-
iments were performed on sets of random points uniformly distributed in the unit
square, and each data point is the maximum of 50 independent trials.

The first set of experiments, shown in Figure 3.6, involved measuring the per-
formance of all six routing algorithms on Delaunay triangulations. Compass routing,
greedy routing, and Voronoi routing consistently achieve better competitive ratios,
with greedy routing slightly worse than the other two. Randomized compass routing,
right-hand routing, and parallel Voronoi routing had significantly higher competitive
ratios. The results for randomized compass routing and right-hand routing show a
significant amount of jitter. This is due to the fact that relatively simple configu-
rations (see Figure 3.1.b) that can easily occur in random point sets result in high
competitive ratios for these algorithms. On the other hand, parallel Voronoi routing
seems much more stable, and achieves better competitive ratios in practice than its
worst-case analysis would indicate.

The most important conclusion drawn from these experiments is that there are
no simple configurations (i.e., that occur often in random point sets) that result in

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

ONLINE ROUTING IN TRIANGULATIONS 949

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400 450 500

C
om

pe
tit

iv
e

ra
tio

Number of vertices

Compass
Greedy

Randomized compass
Right hand

Voronoi
Parallel Voronoi

Fig. 3.6. Empirical competitive ratios for Delaunay triangulations.

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450 500

C
om

pe
tit

iv
e

ra
tio

Number of vertices

Compass
Greedy

Randomized compass
Right hand

Fig. 3.7. Empirical competitive ratios for Graham triangulations.

extremely high competitive ratios for greedy, compass, Voronoi, or parallel Voronoi
routing in Delaunay triangulations. This suggests that any of these algorithms would
work well in practice.

The four simple routing algorithms of section 2 were also tested on Graham tri-
angulations. These are obtained by first sorting the points by x-coordinate and then
triangulating the resulting monotone chain using a linear time algorithm for comput-
ing the convex hull of a monotone polygonal chain [17]. The results are shown in
Figure 3.7. In these tests it was always the case that at least one of the 50 inde-
pendent triangulations defeated greedy routing. Thus, there are no results shown for
greedy routing. The relative performance of the compass, randomized compass, and

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

950 PROSENJIT BOSE AND PAT MORIN

right-hand routing algorithms was the same as for Delaunay triangulations. However,
unlike the results for Delaunay triangulations, the competitive ratio appears to be
increasing linearly with the number of vertices.

4. Comparison with related work. In this section we survey related work
in the area of geometric online routing and compare our results with this work. We
restrict our attention to work directly related to routing between the vertices of geo-
metric graphs in which the source and destination are inputs, and we do not consider
routing in other geometric settings such as polygons (cf. [9, 10, 12]).

Keil and Gutwin [11] give an algorithm for the construction of a geometric graph
called the θ-graph for which a memoryless routing algorithm similar to compass rout-
ing always results in a path whose length is at most a constant (dependent only on
θ) times the Euclidean distance between vsrc and vdst.

Kranakis, Singh, and Urrutia [13] study compass routing and provide a proof
that no Delaunay triangulation defeats compass routing. The current paper makes
use of a very different proof technique to show that compass routing works for a larger
class of triangulations. They also describe an O(1) memory routing algorithm that
is not defeated by any connected planar graph, thus proving a stronger result than
Theorem 2.7.

Lin and Stojmenović [15] and Bose et al. [4] consider online routing in the context
of ad hoc wireless networks modeled by unit disk graphs. They provide simulation
results for a variety of algorithms that measure success rates (how often a packet
never reaches its destination) as well as hop-counts of these algorithms on unit graphs
of random point sets.

Lawson’s oriented walk [14] is a simple algorithm for point location in Delaunay
triangulations without preprocessing. The algorithm can be converted to an O(1)
memory routing algorithm that is not defeated by any Delaunay triangulation. The
results of the current paper improve on this algorithm by providing two memoryless
routing algorithms that are not defeated by any Delaunay triangulation.

De Berg et al. [6] describe an algorithm for enumerating all the vertices of a
connected planar subdivision using only O(1) additional memory. This algorithm can
also be viewed as an O(1) memory routing algorithm. Similarly, in any connected
graph with a finite number of vertices, a random walk will eventually visit every
vertex. Thus, random walking can be viewed as a randomized memoryless routing
algorithm that is not defeated by any graph. Unfortunately paths found by these
techniques will usually be much longer than the shortest path, since they are general
traversal techniques. In contrast, the right-hand routing and randomized compass
routing algorithms make use of information about the source and destination to find
more direct paths.

To the best of our knowledge, no literature currently exists on the competitiveness
of geometric routing algorithms in our abstract setting, and our parallel Voronoi
routing algorithm is the first theoretical result in this area.

5. Conclusions. We have studied the problem of online routing in geometric
graphs. Our theoretical results show which types of graphs our algorithms are guar-
anteed to work on, while our simulation results rank the performance of the algorithms
on two types of random triangulations. These results are summarized in Table 5.1.

We conclude with an open problem. In section 2 we showed that no deterministic
memoryless routing algorithm works for every 2-connected embedded planar graph.
Can a similar argument be made for triangulations, thus proving that randomization
or memory is necessary for an algorithm that is not defeated by any triangulation?

D
ow

nl
oa

de
d

04
/0

5/
18

 to
 1

31
.2

20
.4

.1
41

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

ONLINE ROUTING IN TRIANGULATIONS 951

Table 5.1

Summary of results for greedy routing (GR), compass routing (CR), randomized compass rout-
ing (RCR), right-hand routing (RHR), Voronoi routing (VR), and parallel Voronoi routing (PVR)
algorithms.

Algorithm Mem. Rand. Class of graphs Rank 1 Rank 2 Competitive

GR None No Delaunay �’s 3 – No
CR None No Regular �’s 1 1 No
RCR None Yes All �’s 5 2 No
RHR O(1) No Convex subd. 6 3 No
VR O(1) No Delaunay �’s 1 – No
PVR O(1) No Delaunay �’s 4 – Yes

Acknowledgment. The authors would like to thank Silvia Götz for reading and
commenting on an earlier version of this paper.

REFERENCES

[1] R. Baeza-Yates, J. Culberson, and G. Rawlins, Searching in the plane, Inform. and Com-
put., 106 (1993), pp. 234–252.

[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New
York, 1976.

[3] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge
University Press, Cambridge, UK, 1998.

[4] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia, Routing with guaranteed delivery in
ad hoc wireless networks, in Proceedings of Discrete Algorithms and Methods for Mobility
(DIALM’99), ACM, New York, 1999, pp. 48–55.

[5] V. Chvátal, A combinatorial theorem in plane geometry, J. Combin. Theory Ser. B, 18 (1975),
pp. 39–41.

[6] M. de Berg, M. van Kreveld, R. van Oostrum, and M. Overmars, Simple traversal of
a subdivision without extra storage, Internat. J. Geographic Inform. Systems, 11 (1997),
pp. 359–373.

[7] D. Dobkin, S. J. Friedman, and K. J. Supowit, Delaunay graphs are almost as good as
complete graphs, Discrete Comput. Geom., 5 (1990), pp. 399–407.

[8] H. Edelsbrunner, An acyclicity theorem for cell complexes in d dimension, Combinatorica,
10 (1988), pp. 251–260.

[9] S. K. Ghosh and S. Saluja, Optimal on-line algorithms for walking with minimum number
of turns in unknown streets, Comput. Geom., 8 (1997), pp. 241–266.

[10] C. Icking and R. Klein, Searching for the kernel of a polygon: A competitive strategy, in
Proceedings of the 11th Annual ACM Symposium on Computational Geometry, ACM,
New York, 1995, pp. 258–266.

[11] J. M. Keil and C. A. Gutwin, Classes of graphs which approximate the complete Euclidean
graph, Discrete Comput. Geom., 7 (1992), pp. 13–28.

[12] R. Klein, Walking an unknown street with bounded detour, Comput. Geom., 1 (1992), pp. 325–
351.

[13] E. Kranakis, H. Singh, and J. Urrutia, Compass routing on geometric networks, in Pro-
ceedings of the 11th Canadian Conference on Computational Geometry (CCCG’99), 1999,
pp. 51–54; available online from http://www.cccg.ca/proceedings/1999/.

[14] C. L. Lawson, Software for C1 surface interpolation, in Mathematical Software III, Academic
Press, New York, 1977, pp. 161–194.

[15] X. Lin and I. Stojmenović, Geographic Distance Routing in Ad Hoc Wireless Networks, Tech.
Report TR-98-10, SITE, University of Ottawa, Canada, 1998.

[16] A. Okabe, B. Boots, and K. Sugihara, Spatial Tesselations: Concepts and Applications of
Voronoi Diagrams, John Wiley and Sons, New York, 1992.

[17] F. P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New York,
1985.

[18] G. M. Ziegler, Lectures on Polytopes, Grad. Texts in Math. 154, Springer-Verlag, New York,
1994.D

ow
nl

oa
de

d
04

/0
5/

18
 to

 1
31

.2
20

.4
.1

41
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

