Prof. Dr. Rolf Klein
Barbara Schwarzwald
Institute of Computer Science I

Exercise Sheet 10

Exercise 10.1: Voronoi Sweepline Algorithm

Consider the Sweep-Algorithm for computing a Voronoi-Diagram. Let there be n points already passed by the Sweep-Line. Then answer the following two questions:

How many pieces of the wavefront can the bisectore of a single point with the Sweep-Line contribute to the wavefront.

Show that the wavefront has linear $O(n)$ complexity.
Hint: Look up Davenport-Schinzel-Sequence. While not necessary for the proof, it shortens it significantly.

Exercise 10.2: Voronoi diagram and empty circles

Consider the points on the Voronoi-Diagram of a point set S.
Show the following:
Let x be a point on the plane. Then consider the largest empty circle C around x with an empty interior. If there is exactly one point p from S on C, then x lies in the Voronoi-Region of p. If there are two points p, and q on it then x lies on a Voronoi-Edge between the regions of p and q. If there are three points on it, then x is a Voronoi-vertex.

Exercise 10.3: Convex Hull and Voronoi Diagram

Show that the points of a point set S with unbounded Voronoi-Region are exactly the points on the convex Hull of S.

