Online Motion Planning
 Problem Set 2
 Universität Bonn, Institut für Informatik I

To be solved until the 8th of November

Problem 1:

Prove the following fact: Given two simple grid polygons, we have

$$
E\left(P_{1}\right)+E\left(P_{2}\right)=E\left(P_{1} \cup P_{2}\right)+E\left(P_{1} \cap P_{2}\right)
$$

Problem 2:

We showed that the ℓ-Offset of a simple grid polygon P has got 8ℓ edges less than P, if the ℓ-Offset is connected. Generalize this fact to arbitrary simple grid polygons!

Problem 3:

In the lecture it was shown that the piecemeal setting can be reduced to the tethered robot setting.

Formulate and prove the correctness of a reduction in the opposite direction. I.e. find a scheme that transforms a given piecemeal algorithm with $2(1+\alpha) r$ into a tethered-robot strategy with $(1+\beta) r$ and figure out its cost factor.

Problem 4:

Prove that an unknown graph with unknown radius r can be explored in $O(|E|+|V| / \alpha)$ steps by a tethered robot with cable length $(1+\alpha) r$.
Hint: Use the modification mentioned in the lecture. You basically will have to repeat the proofs of for the original algorithm. Notice that $d_{G^{*}}\left(s, s_{i}\right)$ could be 0 . So replace $d_{G^{*}}\left(s, s_{i}\right)$ by $\max \left(d_{G^{*}}\left(s, s_{i}\right), c\right)$ for some constant $c>0$ and prove the following instead of Claim 4:
After every iteration of the main loop in $C F X$, for every $T \in \mathcal{T}$,

$$
|T| \geq \max \left(d_{G^{*}}(s, T), c\right) \alpha / 4
$$

