Lab Efficient Algorithms for

Institut fir I'nforrr}.at?k ) Selected Problems: Design, Analysis

Prof. Dr. Heiko Roglin . " and Implementation
niversi nn

Magdalena Aretz universitatbo Winter 2013/2014

Tasklist 3
Due Date: 02.12.2013

Basics

1. Using Javadoc:
Javadoc is a helpful tool to quickly produce a HTML-version of the documentation of
your code.

e Find out how to generate Javadoc in Eclipse:
http://www.itcsolutions.eu/2010/12/23/tutorial-java-62-2-how-to-generate-
javadoc-in-eclipse-or-netbeans/.

Note: You will need a JDK (not only a JRE) to use Javadoc.

e Look at the possible paramters of Javadoc:
http://en.wikipedia.org/wiki/Javadocl

2. GNU R:

e If you have not done so already, take your time to work through the introductory
material of R from the previous tasklist.

Implement

1. Turn your comments into Javadoc. You should at least provide one general descrip-
tion of each class and a description of the parameters and return values of the most
important methods.

2. R: Find out how to perform the following two ways of preprocessing your data:

e normalize — scale each dimension of the data such that it lies in the range [0:1],

e standardize — standardize each dimension of the data such that the mean value
is 0 and the variance is 1.
See http://en.wikipedia.org/wiki/Standard_score.

Compute two new versions of each dataset: the normalized and the standardized one.

3. Java: Make sure you have a function that computes the final error of the k-Means
algorithm. Remember that this error consists of the summed squared distances of each
point to its nearest center:

O(X,C) =Y mincecllz — ¢l
rzeX

where X is the dataset and C is the set containing the final centers.


http://www.itcsolutions.eu/2010/12/23/tutorial-java-62-2-how-to-generate-javadoc-in-eclipse-or-netbeans/
http://www.itcsolutions.eu/2010/12/23/tutorial-java-62-2-how-to-generate-javadoc-in-eclipse-or-netbeans/
http://en.wikipedia.org/wiki/Javadoc
http://en.wikipedia.org/wiki/Standard_score

4. Java: Modify your code such that it contains a method runKMeans that receives the
following parameters:

name of the dataset

a value for k

preprocmode, which defines which kind of preprocessing is applied

initmode, which defines how the centers are initialized

and runs k-Means with the specified parameters. You should be able to tell the final
error and the number of steps performed until convergence.

5. Java: Write a class Fxperiment that calls runKMeans a predefined number of times
(e.g. 10 reiterations). It should store one line for each result of running runKMeans in
a file called ezperiments.csv that has the following format:
name, n, d, k, preprocmode, initmode, number of steps, final error.

6. Fix one setting (e.g. name = “cloud-01”, k = 10, preprocmode = “standardize”, in-
itmode = “plusplus”) and use Ezperiment to collect the results of at least 20 runs of
k-Means for this setting.

7. R: Find out how to read the file experiments.csv and how to select the column you are
interested in (e.g. the final error or the number of steps until termination).

Now generate at least one plot that visualizes the results of your experiment (e.g. you
might want to plot the distribution of the final error or the number of steps until
termination).



