
Institut für Informatik
Prof. Dr. Heiko Röglin
Magdalena Aretz

Lab Efficient Algorithms for
Selected Problems: Design, Analysis

and Implementation
Winter 2013/2014

Tasklist 4
Due Date: 16.12.2013

Basics

1. Testdriven Development:

• Have a look at
http://en.wikipedia.org/wiki/Test-driven_development.
Think about what parts of your code it might be useful to implement tests for.

• Recapitulate what you have learned from the first tasklist (from the Eclipse and
Java for Total Beginners tutorial) about how to write JUnit testcases.

2. GNU R:

• Learn about advanced concepts and data structures in R by working through
chapters 4 – 6, 9 and 10.1 of
http://cran.r-project.org/doc/manuals/R-intro.html.

Implement

1. Java: By now your code contains several useful methods that you might want to reuse in
different occasions later on or even in the context of a different project (e.g. a method
that computes the euclidean distance between two points, a method for writing a
twodimensional array into a .csv file etc). Create a class KMUtilities and move those
functions there.

2. Java: Write JUnit testcases for all methods in KMUtilities. For example you could
define two arrays and check whether the method for computing their euclidean distance
works as expected.

3. Java: By now, you have some variants of the initialization method for the centers in
k-Means. Now implement at least one modified update rule. Here are some examples:

• Single-Point k-Means – Only reassign one point per step.

• Hartigan’s Method – Only reassign one point per step and also take into account
those points whose reassignment only improves the objective function during the
next iteration of one E-Step plus one M-step.

• Lazy k-Means – Only reassign points if the distance to the new center is at least
by some ε smaller than the original value.

1

http://en.wikipedia.org/wiki/Test-driven_development
http://cran.r-project.org/doc/manuals/R-intro.html


• Jump k-Means – Introduce a jump-step in which centers that moved less than
some ε-value during the M-step are pushed into a random direction. In order to
guarantee termination, the jump step should be reversed if it did not improve the
objective function.

• ...

You are free to pick any other variant you already know about. If you want to, you can
even think of a new modified update rule.

4. Java: Use your existing code to conduct a broader series of experiments. Make sure
you are able to combine every choice of data, preprocessing operator, choice for k,
initialization rule and update rule into one setting. For each setting you should obtain
at least two different performance metrics: the final error value and the number of steps
until convergence.

5. R: Try to capture the outcome of the experiments in different kinds of plots. Essentially
you can plot every pair of parameter vs. performance metric, e.g.

• different values for k → final error

• choice of operator for preprocessing → number of steps until convergence

• choice of the initialization method → final error

• ...

Try to obtain significant results and think about explanations for what you measured.

6. Think about one central question you want to answer in your final presentation. For
example:

• How does the structure of the data influence the performance of k-Means?

• How does the variance of the final error of k-Means change with the method of
initialization?

• To what extend does preprocessing (scaling, standardization, outlier detection
etc.) influence the running time and final error of k-Means?

• ...

You should be able to explain why this question is interesting and what kind of ex-
periments could answer it. You should also already think about how to visualize the
behavior you might observe.

2


