```
    Online Motion Planning, WT 13/14
    Exercise sheet 4
University of Bonn, Inst. for Computer Science, Dpt. I
```

- You can hand in your written solutions until Tuesday, 19.11., 14:15, in room E.06.

Exercise 10: Competitive analysis, minimum distance (4 points)

We consider the problem of finding a door in a wall. Starting from point s on a line ℓ, a robot moves along ℓ until it has found a "door" - in other words, a destination point t on ℓ.
It is a common assumption that the target t cannot lie arbitrarily close to s. Recall that $A L G$ is C-competitive, if there exists a constant $\alpha \geq 0$, where

$$
\operatorname{ALG}(t) \leq C \cdot \mathrm{OPT}(t)+\alpha
$$

holds for all possible placements of t on ℓ.
Show that the following holds for any two constants $K>k>0$ and any algorithm $A L G$ for locating t :
$A L G$ is a C-competitive algorithm for finding t, assuming that the distance from t to s is at least k, if and only if $A L G$ is C-competitive assuming that the distance from t to s is at least K.

Please turn the page!

Exercise 11: Competitive complexity

Find an upper bound on the competitive complexity of the following strategy $A L G$ for locating a door in a wall.
Let $a>1$ be a constant, then the i-th move $(i=1,2, \ldots)$ of the robot is defined as follows. If i is odd, the robot moves to the point at distance a^{i-1} to the left of its starting point s, otherwise it moves to the point at distance a^{i-1} to the right of s.

Hint: Use the same analysis as used in the lecture for the case $a=2$.

Exercise 12: Bug leaving from closest vertex

(4 points)
We consider a modification to the $B U G$ algorithm. The bug starts at its starting point s. In order to reach a destination point t, the bug moves in direction of t, until an obstacle O hinders its movements. As usual, the bug walks along the boundary of O and keeps track of the distance to t.
The modification is as follows. Instead of leaving O at a point closest to t, the bug leaves O at a vertex v of O 's boundary which is closest to t. Then, the bug continues in direction of t, until it encounters another obstacle.
Prove or disprove that the modified $B U G$ algorithm will eventually reach the target point t, although possibly not as quickly as the unmodified algorithm.

