Online Motion Planning, WT 13/14
 Exercise sheet 7
 University of Bonn, Inst. for Computer Science, Dpt. I

- You can hand in your written solutions until Tuesday, 10.12., 14:15, in room E.06.

Exercise 19: Star-shaped streets

A Polygon P is called star-shaped, if there is at least one point p in P that can see every other point q in P. The set of all those points p in P is called the kernel of P.

Let P be a star-shaped polygon. Prove that for every point s on the boundary ∂P of P there is a point $t \in \partial P$ such that (P, s, t) is a street.

Exercise 20: Streets and angular bisectors (4 points)

We consider the following simple strategy for finding the target point t inside a street (P, s, t).
Given a triangle defined by the three points p (the current position), v_{l} and v_{r} (as defined in the lecture), the robot moves along the fixed angular bisector until either v_{l} or v_{r} changes. In Figure 1, the robot moves in direction from point p to point z, until v_{r} changes at point p^{\prime}.
Analyse the competitive factor of this simple strategy inside one triangle, defined by three points p, v_{l}, v_{r} (point t is hidden just behind one of the two vertices v_{l} and v_{r}), assuming $p=s$ is the starting point.

Figure 1: Moving along the angular bisector of the current triangle.

Exercise 21: Angle Hull

(4 points)
Let D_{1} and D_{2} be two disks bounded by two circles C_{1} and C_{2} in the plane, where $D_{1} \subset D_{2}$. Let $r_{1}<r_{2}$ denote the radius of C_{1} and C_{2} respectively; compare Figure 2. The angle hull of D_{1} is the set of points in D_{2} that can

Figure 2: Two disks D_{1} and D_{2} in the plane.
see two points of D_{1} at a right angle.

1. Assuming circles C_{1} and C_{2} are concentric, what is the boundary of the angle hull of D_{1} ?
2. Give a formal description of the angle hull of D_{1} and its boundary, if C_{1} and C_{2} are not necessarily concentric.
3. Prove that the perimeter P of the angle hull of D_{1} is less than $2 \pi \sqrt{2} r_{1}$ and also less than $2 \pi r_{2}$.
