Pearls of Algorithms

Winter 2014/15

Exercise sheet 2.1

Exercise 1 Voronoi region complexity

Show that for all $n>3$, there exists a set of n points in the plane, such that one Voronoi region has got $n-1$ vertices on its boundary.

Exercise $2 \quad L_{1}$ bisector example

Choose two points p and q in the plane, such that the line through them is not parallel to the x - or y-axis. Then draw the bisector of p and q in the L_{1}-norm

$$
\|p-q\|_{1}=\left|p_{x}-q_{x}\right|+\left|p_{y}-q_{y}\right|
$$

Exercise 3 Nearest Neighbour

Let $S \subset \mathbb{R}^{2}$ be a finite set of points and let $p \in S$. Of how many points $q \in S \backslash\{p\}$ may p be a nearest neighbour?

Exercise 4 Closest Pair

Let n points be given in the plane. Describe how to compute the distance of a closed pair in time $O(n \log n)$ using a Divide and Conquer-algorithm. Explain the correctness and running time.

