

Norbert Blum Marek Karpinski Rolf Klein Heiko Röglin

Institute of Computer Science

Pearls of Algorithms

Winter 2014/15

Exercise sheet 2.2

Exercise 1 Davenport-Schinzel-Sequence

- a) Which of the following words are a Davenport-Schinzel-Sequence (DSS)? If a word is a DSS, also determine its (minimum) order.
 - 1. dada

2. hubbabubbabubblegum

- b) Given is the alphabet $\{o, k, a, p, i\}$. Create a DSS of maximal length of order two.
- **d)** Prove that $\lambda_2(n) = 2n 1$ holds.

Exercise 2 Sweep Linesegments

Consider the line segment arrangement \mathcal{A} depicted in Figure 1. Use the algorithm presented in the lecture for computing the set of line segment intersections in \mathcal{A} , and state in which order the intersection points in \mathcal{A} are

- a) discovered and
- b) reported by the algorithm.

Figure 1: A line segment arrangement

Furthermore, specify how the Sweep-Status-Structure $S\!S\!S$ looks like at any given time.

Exercise 3 Linesegment intersection

Prove the following fact: For every natural number n and every $k \in \{0, \ldots, \binom{n}{2}\}$ one can find an arrangement of n linesegments which has exactly k different intersections.

Exercise 4 Convex hull

Let S be a set of n points in the plane. Assume we already know that every point from S lies on the boundary of the convex hull of S. Under this assumption can you create an algorithm that computes the convex hull of S in time O(n)?