Pearls of Algorithms

Winter 2014/15

Exercise sheet 2.3

Exercise 1 Complexity of Triangulations

Let $S \subset \mathbb{R}^{2}$ be a set of n points in general position i.e. with no four points on a common circle. Let $r=|S \cap \partial \operatorname{ch}(S)|$ be the number of vertices on the boundary of its convex hull. Show that any triangulation of S consists of exactly $2 n-2-r$ triangles and $3 n-3-r$ edges.

Exercise 2 Complexity of Cyclic Polytopes

Let $d>1$ and let S be a finite subset of the moment curve

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R}^{d} \\
t & \mapsto\left(t, t^{2}, \ldots, t^{d}\right) .
\end{aligned}
$$

Show that all points of S belong to the boundary of the the convex hull of S, i.e. $S \subseteq \partial \operatorname{ch}(S)$.

Exercise 3 Graph Embedding on the Moment Curve

Let $G=(V, E)$ be a graph and let

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R}^{3} \\
t & \mapsto\left(t, t^{2}, t^{3}\right)
\end{aligned}
$$

be the moment curve in \mathbb{R}^{3}. Show that any reasonable embedding of G on f is crossing-free.

Exercise 4 Packing Points in a Square

Let $S=[0,1]^{2}$ be the unit square. Can we place ten points in S such that they are pairwise far to each other in terms of $\|p-q\|>\frac{\sqrt{2}}{3}$?

