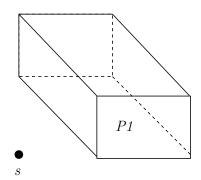
Offline Bewegungsplanung: Polyeder

Elmar Langetepe University of Bonn

• Startpunkt s,

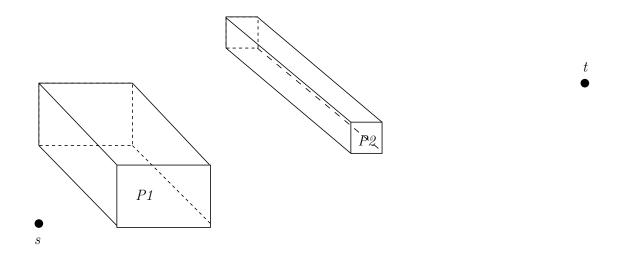
• Startpunkt s, Zielpunkt t

- Startpunkt s, Zielpunkt t
- Menge von Polyedern

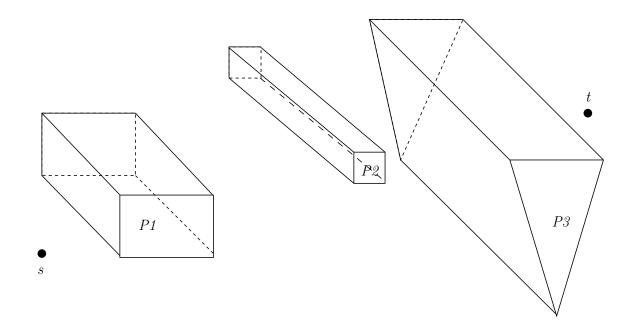


t

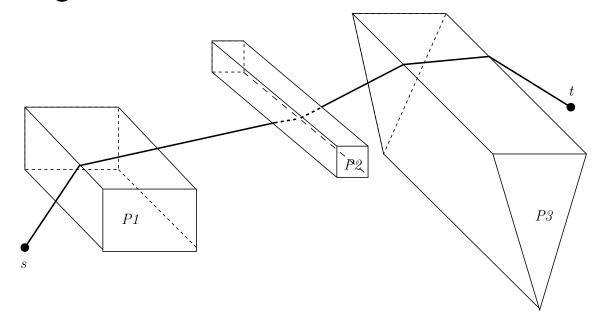
- Startpunkt s, Zielpunkt t
- Menge von Polyedern



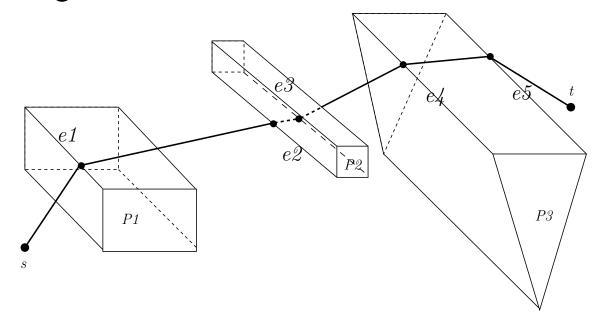
- Startpunkt s, Zielpunkt t
- Menge von Polyedern



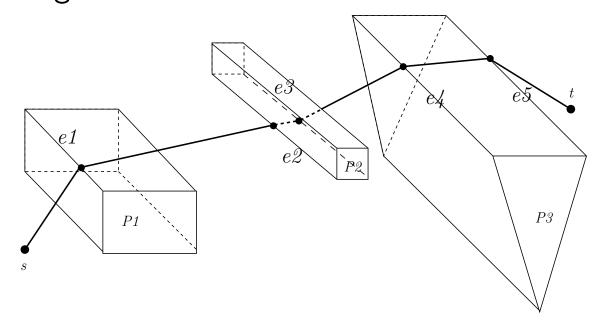
- Startpunkt s, Zielpunkt t
- Menge von Polyedern
- ullet Kürzester Weg von s nach t:

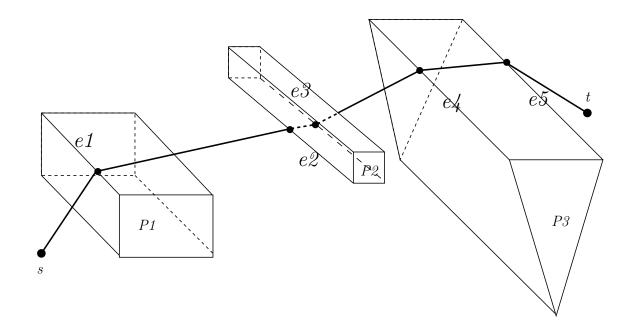


- Startpunkt s, Zielpunkt t
- Menge von Polyedern
- ullet Kürzester Weg von s nach t:

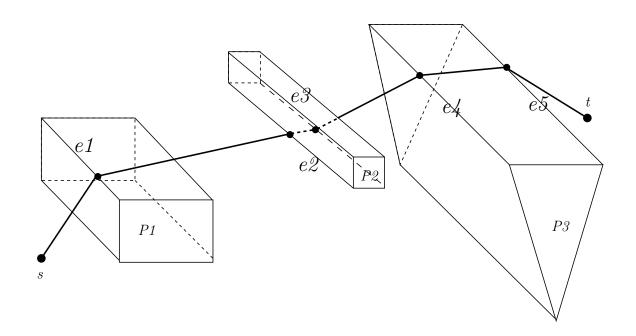


- Startpunkt s, Zielpunkt t
- Menge von Polyedern
- ullet Kürzester Weg von s nach t: NP-hard

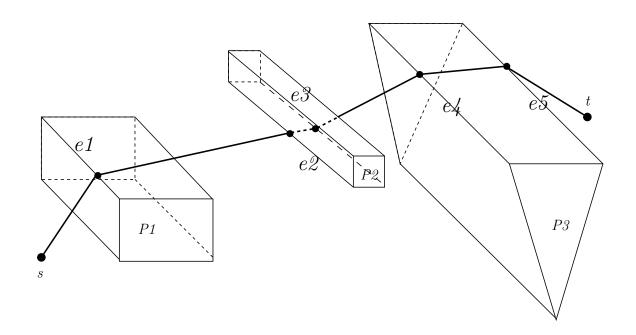




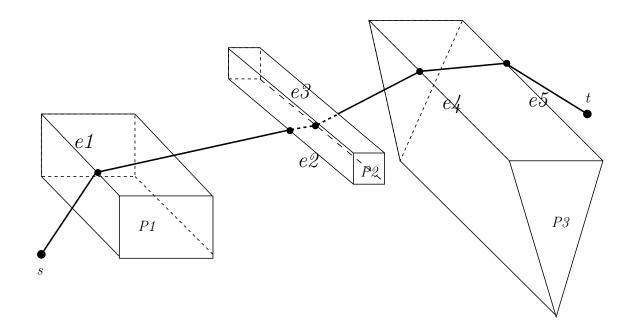
• Teilprobleme



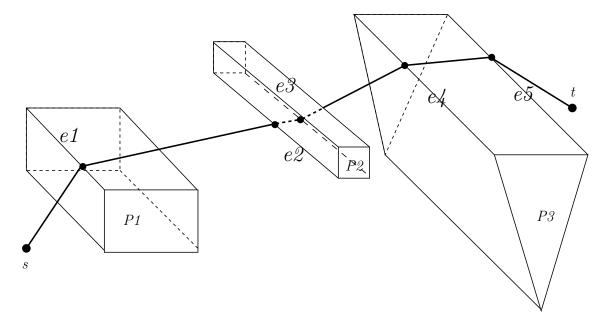
- Teilprobleme
- 1) Kantenreihenfolge



- Teilprobleme
- 1) Kantenreihenfolge
- 2) Verschiebung auf der Kante



- Teilprobleme
- 1) Kantenreihenfolge
- 2) Verschiebung auf der Kante
- Bereits 1) ist NP hard



• Reduktion $S' \subset \Omega'$ auf $S \subset \Omega$

- Reduktion $S' \subset \Omega'$ auf $S \subset \Omega$
- ullet Funktion $f:\Omega' \to \Omega$

- Reduktion $S' \subset \Omega'$ auf $S \subset \Omega$
- Funktion $f: \Omega' \to \Omega$
 - 1. $\forall x' \in \Omega'$: f(x') in polynomieller Zeit (|x'|)
 - 2. $\forall x' \in \Omega'$: $f(x') \in S \Leftrightarrow x' \in S'$

- Reduktion $S' \subset \Omega'$ auf $S \subset \Omega$
- Funktion $f: \Omega' \to \Omega$
 - 1. $\forall x' \in \Omega'$: f(x') in polynomieller Zeit (|x'|)
 - 2. $\forall x' \in \Omega'$: $f(x') \in S \Leftrightarrow x' \in S'$
- 3-SAT NP vollständig

- Reduktion $S' \subset \Omega'$ auf $S \subset \Omega$
- Funktion $f: \Omega' \to \Omega$
 - 1. $\forall x' \in \Omega'$: f(x') in polynomieller Zeit (|x'|)
 - 2. $\forall x' \in \Omega'$: $f(x') \in S \Leftrightarrow x' \in S'$
- 3-SAT NP vollständig
- 3-SAT reduzieren auf Kantenreihenfolge

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

m Klauseln mit n Variablen:

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

m Klauseln mit n Variablen: Erfüllbarkeit?

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

m Klauseln mit n Variablen: Erfüllbarkeit?

Konstruiere Parcours P_{α} , so dass:

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

m Klauseln mit n Variablen: Erfüllbarkeit?

Konstruiere Parcours P_{α} , so dass:

ullet Kürzester Weg (Kantenfolge) von s nach t erzeugt Belegung w

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

m Klauseln mit n Variablen: Erfüllbarkeit?

Konstruiere Parcours P_{α} , so dass:

- ullet Kürzester Weg (Kantenfolge) von s nach t erzeugt Belegung w
- w erfüllt $\alpha \Rightarrow$ fertig!

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

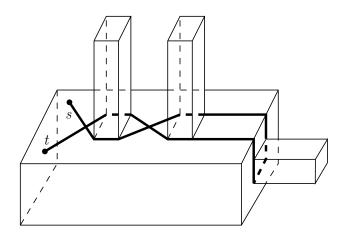
m Klauseln mit n Variablen: Erfüllbarkeit?

Konstruiere Parcours P_{α} , so dass:

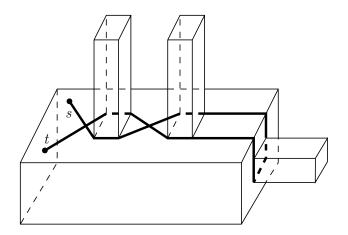
- ullet Kürzester Weg (Kantenfolge) von s nach t erzeugt Belegung w
- w erfüllt $\alpha \Rightarrow$ fertig!
- w erfüllt α nicht \Rightarrow kein w erfüllt α

ullet 2ⁿ Belegungen der n Variablen

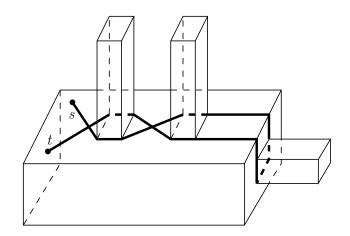
- 2^n Belegungen der n Variablen
- 2ⁿ geodätisch Kürzeste Wege



- 2^n Belegungen der n Variablen
- \bullet 2^n geodätisch Kürzeste Wege
- Eine davon wird die Kürzeste sein



- 2^n Belegungen der n Variablen
- 2ⁿ geodätisch Kürzeste Wege
- Eine davon wird die Kürzeste sein
- Ergibt Variablen-Belegung nach Kantenreihenfolge

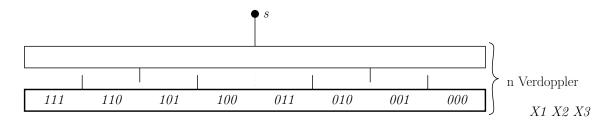


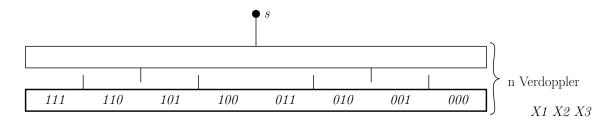
Parcours erzeugen: Prinzip

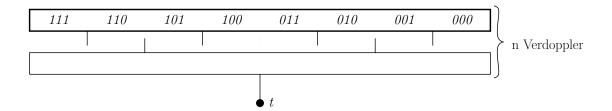
Parcours erzeugen: Prinzip

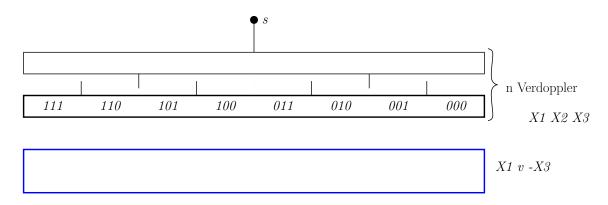
Beispiel: $(X1 \lor \neg X3) \land (\neg X2)$

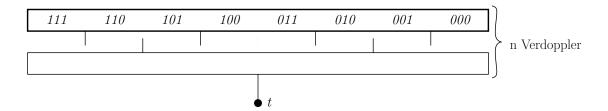
Beispiel:
$$(X1 \lor \neg X3) \land (\neg X2)$$

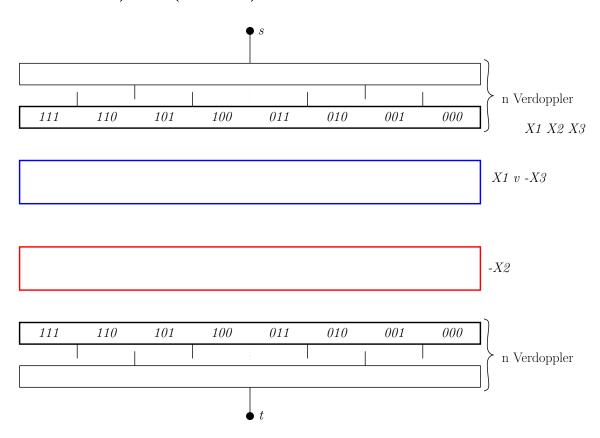


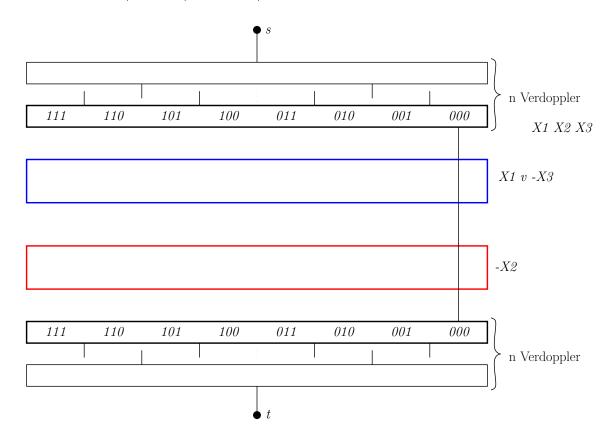


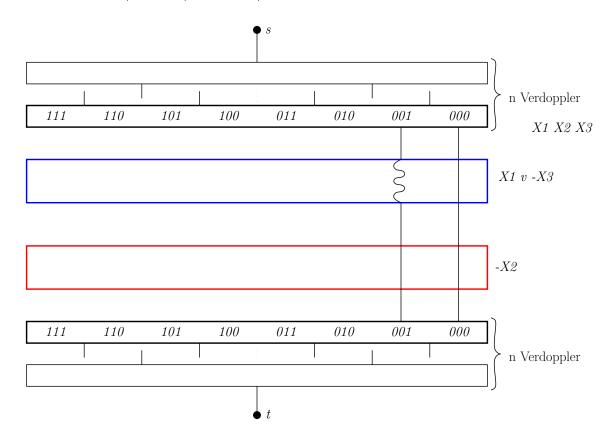


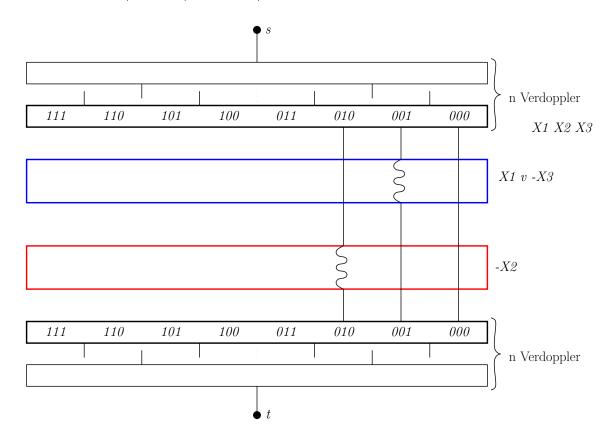


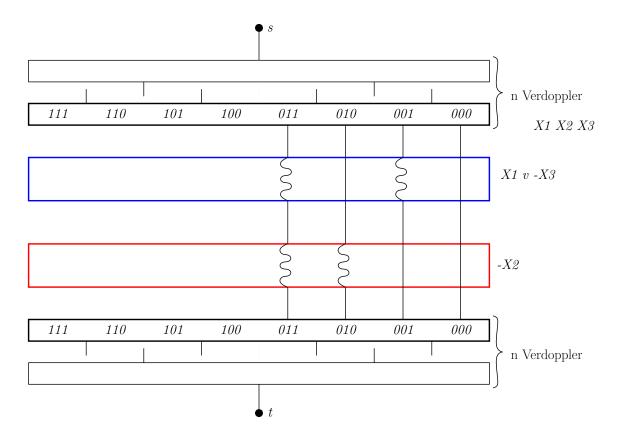


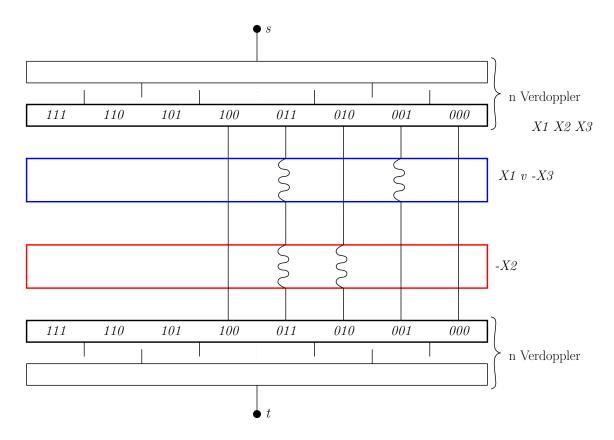


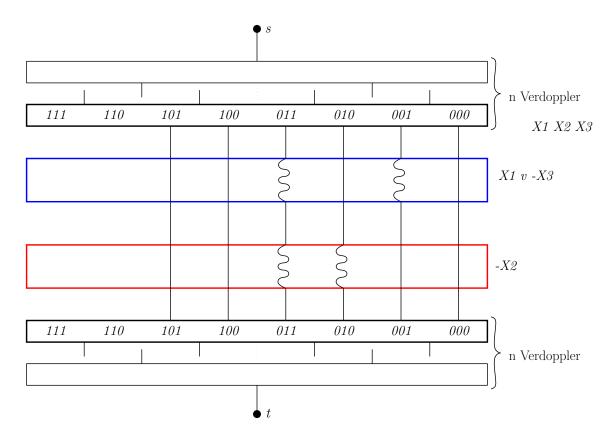


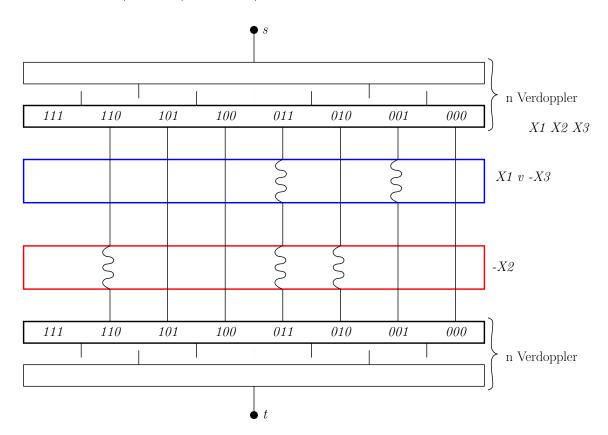


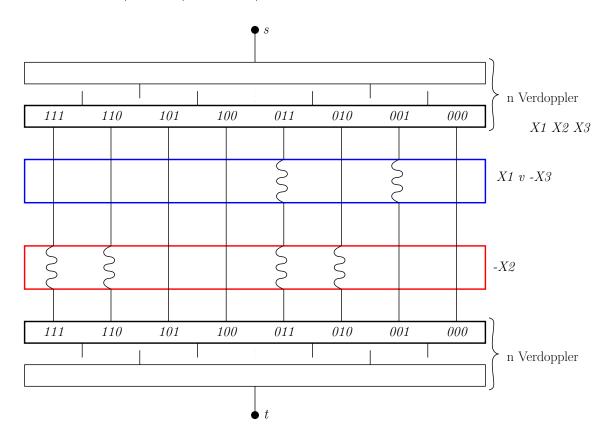






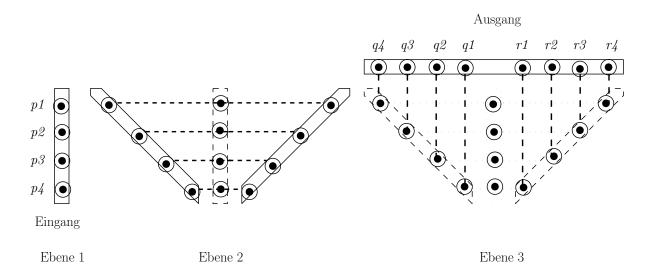






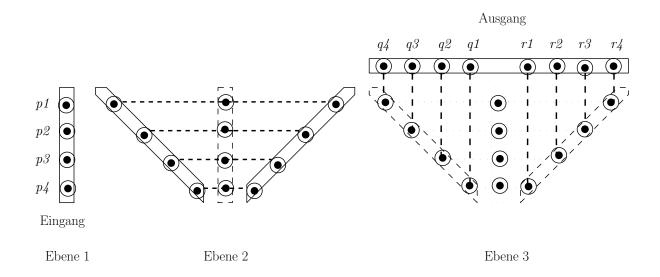
Dünne Platten mit Schlitzen eng hintereinander!

Dünne Platten mit Schlitzen eng hintereinander!



Sukzessive 2^n ungefähr gleichlange Wege erzeugen!

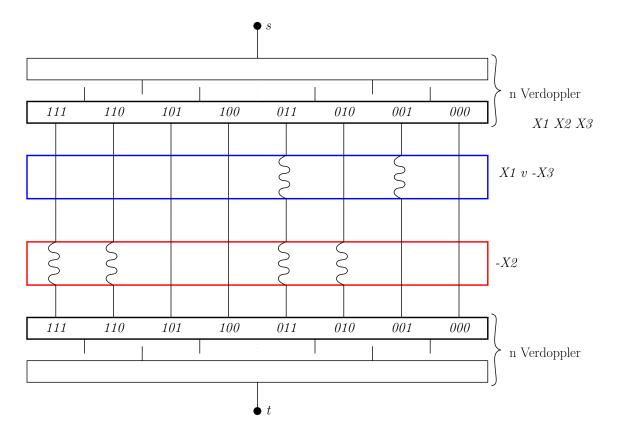
Dünne Platten mit Schlitzen eng hintereinander!



Sukzessive 2^n ungefähr gleichlange Wege erzeugen!

Kantenreihenfolge ist gleich!

Gesamtprinzip: Nacheinander Klauseln!



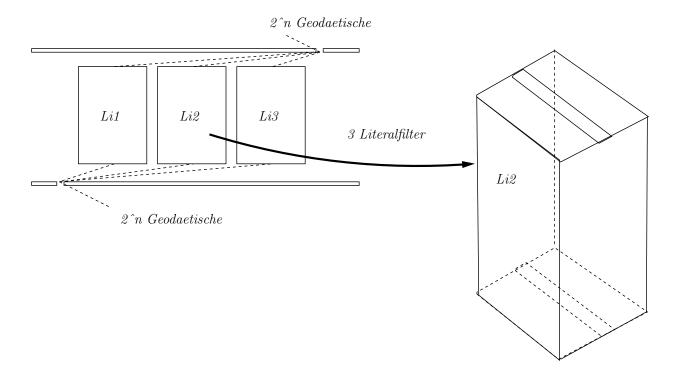
Komponenten: Klauselfilter

Komponenten: Klauselfilter

Sukzessive durch die Klauseln schicken! Auf Literale aufteilen! Dünne Platten!

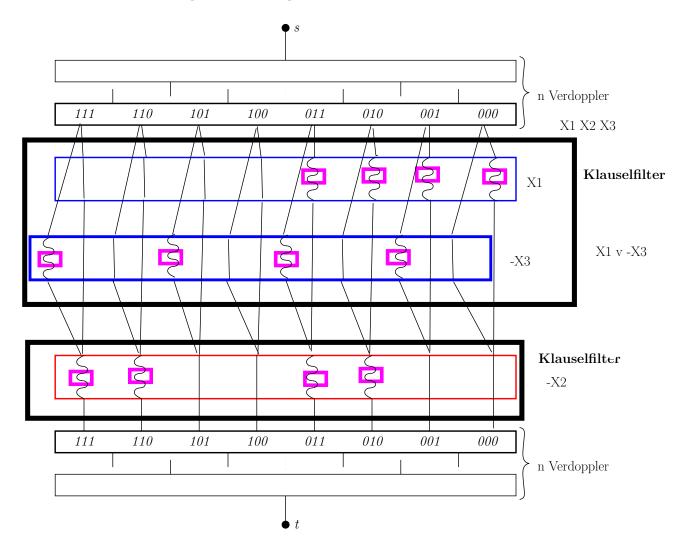
Komponenten: Klauselfilter

Sukzessive durch die Klauseln schicken! Auf Literale aufteilen! Dünne Platten!



Gleich lang, bis auf das, was in den Literalfiltern passiert!

Gesamtprinzip: Einzelne Literale



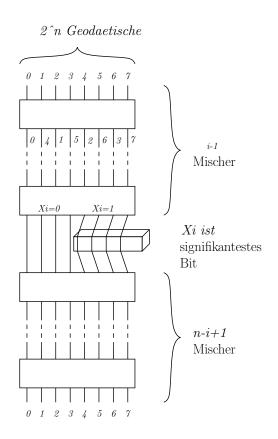
Komponenten: Literalfilter

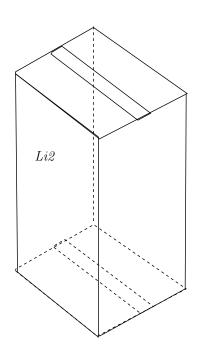
Komponenten: Literalfilter

Wege für signifikantes Bit sammeln!

Komponenten: Literalfilter

Wege für signifikantes Bit sammeln!



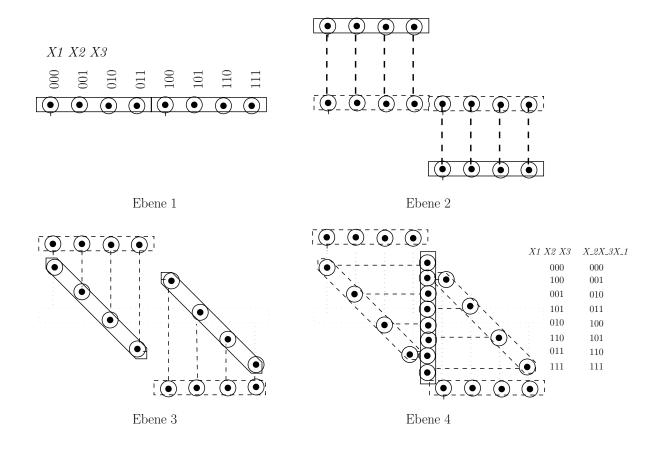


Falls X_i dann $X_i = 0$ verlängern! Falls $\neg X_i$ dann $X_i = 1$ verlängern!

n Mischer pro Literalfilter!!

n Mischer pro Literalfilter!! Ein Mischer erzeugt Bitverschiebung der Wege um 1! Alle bleiben gleich lang!!

n Mischer pro Literalfilter!! Ein Mischer erzeugt Bitverschiebung der Wege um 1! Alle bleiben gleich lang!!



Kürzeste Wege Alg. für P_{α}

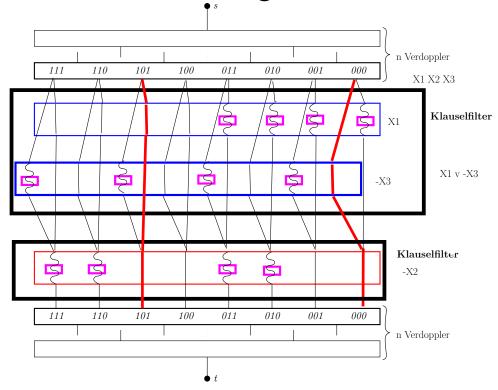
Kürzeste Wege Alg. für P_{α} Ein Weg, der nicht verlängert wird entspricht genau einer Belegung, die die Formel erfüllt!!!

Kürzeste Wege Alg. für P_{α} Ein Weg, der nicht verlängert wird entspricht genau einer Belegung, die die Formel erfüllt!!!

Das kann man der Kantenreihenfolge entnehmen!!

Kürzeste Wege Alg. für P_{α} Ein Weg, der nicht verlängert wird entspricht genau einer Belegung, die die Formel erfüllt!!!

Das kann man der Kantenreihenfolge entnehmen!!



• 2n Verdoppler: O(n) Kanten

• 2n Verdoppler: O(n) Kanten

• m Klauselfilter: je Klauselfilter

- 3 Literalfilter

• 2n Verdoppler: O(n) Kanten

• m Klauselfilter: je Klauselfilter

- 3 Literalfilter

-n Mischer je Filter

Konstruktion insgesamt!!

- 2n Verdoppler: O(n) Kanten
- m Klauselfilter: je Klauselfilter
 - 3 Literalfilter
 - -n Mischer je Filter
- Insgesamt O(mn) Kanten

Konstruktion insgesamt!!

- 2n Verdoppler: O(n) Kanten
- m Klauselfilter: je Klauselfilter
 - 3 Literalfilter
 - -n Mischer je Filter
- Insgesamt O(mn) Kanten
- In polynomieller Zeit konstruierbar

Ergebnis!!!

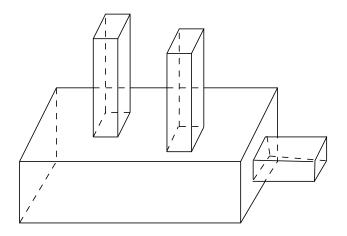
Ergebnis!!!

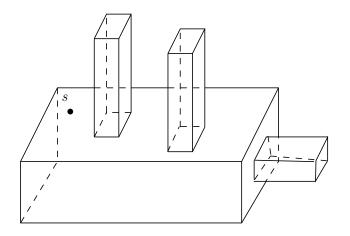
Theorem 1.38 (Canny/Reif): Bestimmung der optimalen Kantenfolge bei der Berechnung Kürzester Wege in polyedrischer Szene in 3D ist NP hart.

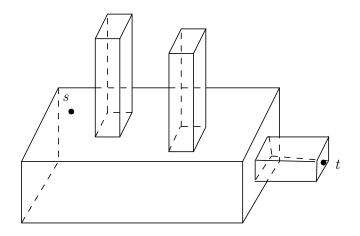
Ergebnis!!!

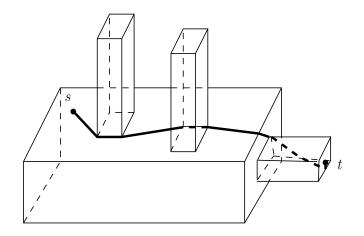
Theorem 1.38 (Canny/Reif): Bestimmung der optimalen Kantenfolge bei der Berechnung Kürzester Wege in polyedrischer Szene in 3D ist NP hart.

Beweis!!

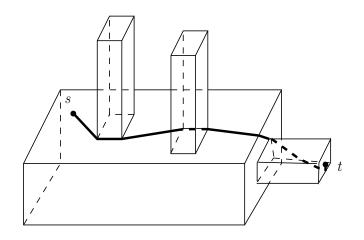




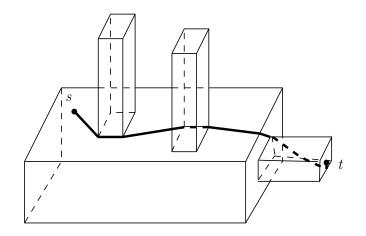




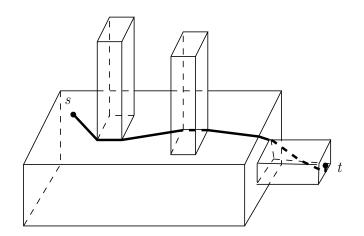
- Natürliche Erweiterung der Polygone auf 3D
- Rand besteht aus Polygonen



- Natürliche Erweiterung der Polygone auf 3D
- Rand besteht aus Polygonen
- Keine dünnen Stellen:



- Natürliche Erweiterung der Polygone auf 3D
- Rand besteht aus Polygonen
- ullet Keine dünnen Stellen: ϵ -Kugeln



- Natürliche Erweiterung der Polygone auf 3D
- Rand besteht aus Polygonen
- Keine dünnen Stellen: ϵ -Kugeln
- Datenstruktur QEDS: Triangulation Oberflächen, Navigation!

