Arrangement of Hyperplanes (Chapter 6.1 and Chapter 6.3)

For a set H of hyperplanes in R?, the arrangement of H is a partition of R?
into relatively open convex faces.

e O-faces called vertices
e 1-faces called edges
e (d — 1)-faces called facets

e (-faces called cells.

Faces in the arrangement
e The cells are the connected components of R\ | J H.

e The facets are obtained from the (d—1)-dimensional arrangements induced
in the hyperplanes of H by their intersections with the other hyperplanes

— For each h € H, take the connected components of A\ Ujcr oz M-

e k-faces are obtained from every possible k-flat L defined as the intersection
of some d — k hyperplanes of H

— The k-faces of the arrangement lying within L are the connected com-
ponents of L\ (H \ Hy), where Hp ={h € H| L C h}

Sign Vectors:
A face F' of the arrangement of H can be described by its sign vectors

e ['ix the orientation of each hyperplane
— Bach h € H partitions R? into three regions: h itself and the two open
half-spaces determined by it.

— Choose one of these open half-spaces as positive and denote it by h®,
and we let the other one be negative and dnote it by A°,

e The sign vector of F is defined as o(F') = (o, | h € H) where

+1if F C h®,
op = Olngh,
—1if I C h°.



The face F'is determined by its sign vector, since we have

where hg = h, h* = h® and h™! = h°.

Not all possible sign vectors corresponds to nonempty faces

e For n lines, there 3" sign vectors but only O(n?) faces.

Counting the cells in a hyperplane arrangement
e General Position

— The intersection of every k hyperplanes is (d — k)-dimensional, k =
2,3,...,d+1.

— It H > d + 1, then it suffices to require that every d hyperplanes
intersect at a single point, and no d + 1 hyperplane have a common
point.

e If H is in general position, the arrangement of H is called stmple

e Every d-tuple of hyperplanes in a simple arrangement determines exactly
one vertex, so a simple arrangement of n hyperplanes has exactly (Z)
vertices.

e The number of cells will be shown to be O(n?) for d fixed.



Proposition
The number of cell (d-faces) in a simple arrangement of n hyperplane in R?

- () () )

e Proceed by induction on the dimension d and the number of hyperplanes

equals

First proof

.
e Ford=1

— We have a line and n points in it

— These divide the line into n 4+ 1 one-dimensional pieces, and the state-
ment holds.

e For n =0 and d > 1, it trivially holds.

e Suppose we are in dimension d, we have n — 1 hyperplanes, and we insert
another one A

e By the inductive hypothesis, the n — 1 previous hyperplanes divide the
newly inserted hyperplane h into ¢g_1(n — 1) cells

e Each such (d — 1)-dimensional caell within A partitions one d-dimensional
cell into exactly two cells.

e The total increase in the number of cells caused by inserting A is ¢g_1(n —
1), so

Ga(n) = da(n — 1) + da_1(n — 1).

e Together with the intial condition (for d = 1 and n = 0), it remains to
check the formula satisfies the recurrence

Galn = 1)+ daa(n—1) = (") +[("})



second proof
e Proceed by induction on d, the case d = 0 being trivial.
o Let H be a set of n hyperplanes in R? in general posistion

— Assume no hyperplanes of H is hortizontal

— Assume no two vertices of the arrangement have the same vertical-level
(x4-coordinate)

e Let g be an auxiliary horizonal hyperplane lying below all the vertices
e A cell of the arrangement of H is

— bounded from below, and in this case it has a unique vertex,
— or is not bounded from below, and then it intersects g
e The number of cells of the former type is the same as the number of
vertices, which is (Z)

e The cells of the latter type correspond to the cells in the (d—1)-dimensional
arrangement induced within g by the hyperplanes of H, and their number

if thues ¢g_1(n).

Level of a point
For a set H of hyperplanes in R? and a point z € RY, the level of z with
respect to H is the number of hyperplanes in H lying strictly below x.

k-level

For a set H of n hyperplanes in R?, the k-level of the arrangement of H is
the closure of facets in the arrangement whose interior points have a level of
k with respect to H.

e The size of the k-level is counted by its vertices
o For d = 2, its size is Q(n2Y15%) and O(nk'/?)

e For d = 3, its size is Q(nk2Y16%) amd O(nk*/?).
e The k-level is dual to the k-set



At most k-levels For a set H of n hyperplanes in R?, the at most k-levels,
denoted by < k-level, is the collection of i-level for 0 <1 < k.

e its size is counted by the number of vertices.

< 2-level

O-level has O(nl9/2]) vertices

e The vertices of the O-level are the vertices of the cell lying below all the
hyperplanes

e This cell is the intersection of at most n half-space.

Clarkson’s theorem on levels
The total number of vertices of level at most k in an arrangement of n hy-
perplanes in R? is at most

O(nl2 (| + 1)14/21

The lower bound for the number of vertices of level at most k is

Qnl 2 1721)

e Consider a set of 7 hyperplanes such taht the lower unbounded cell in
Ld/2J)

their arrangement is a convex polyhedron with Q((Z) vertices
e Replace each of the hyperplanes by k very close parallel hyperplanes.

e Bach vertex of level 0 in the original arrangement gives rise to Q(k?)
vertices of level at most k in the new arrangement



Proof of Clarkson’s Theorem for d = 2
e Let H be a set of n lines in general position
e Let p denote a certain suitable number in the interval (0, 1)
e Imagine a random experiment
— Choose a subset R C H at random, by including each line h € H into
R with probability p

* the choices are independent for distinct lines h.

— Consider the arrangement of R, and let f(R) denote the number of
vertices of level 0 in the arrangement of R.

— Since R is randomly chosen, f is a random variable.

— Estimate the expectation of f, denoted by F[f].

— For any specific set R, we have f(R) < |R|, so E|[f] < E||R|] = pn.
— Bound E[f] from below

x For each vertex v of the arrangement of H, we define an event A,
meaning “v becomes one of the vertices of level 0 in the arrangement

of R
« That is, A, occurs if v contribute 1 to the value of f
x A, occurs if and only if the following two conditions are satisfied:
- Both lines determining v lie in R
- None of the lines of H lying below v falls into R

>< ] These must be in R
>< These must NOT be in R

-

ProblA,| = p2(1 — p)l(“),

where [(v) denotes the level of the vertex v



o Let V be the set of all vertices of the arrangement of H, and let V<, C V
be the set of vertices of level at most k.

Z Prob[A Z Prob[A
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e Since np > E[f] > |V<i| - p*(1 — p)*,
n

p(1 —pk

e Choose the number p to minimize the right hand side

[Var| <

1
k+1

— Since (1 — —) >e 1 > % for all k > 1,

k41
Vi < 3(k+ 1Dn.

— A convenient value is p =

Proor for an arbitrary dimensions

e Define an integer parameter r and choose a random r-element subset
R C H, with all (") subsets being equally probable.

e Define f(R) as the number of vertices of level 0 with respect to R, and
estimate F[f] in two ways (from up and below).

e Since f(R) = O(rl9/2) for all R,
Blf) = (sl
e Let V be the set of all vertices in the arrangement of H, V< be the set of

vertices in V' whose level with respect to H is at most k£, and A, be the
event “v is a vertex of level 0 with respect to R.”

e The conditions for A, are

— All the d hyperplane defining the vertex v fall in R.
— None of the hyperplane of H lying below v fall in R.



e If | =(v) is the level of v, then

ProblA,] = Uil )

()

n—d—lI
e Let P(l) denote ( E;Si )

— P(l) is a decreasing function.

e Therefore,

E[f] =) Prob[A,] > Ve - P(k).

e Set 7 be [5].
— as inspired by the case for d = 2, where pn = 2=
e We will prove latter that If 1 < k < 55 —1,
P(k) > cyk+ 1)1
for a suitable ¢; > 0 depending only on d.

e Combining |V<y| < %, P(k) > ca(k+1)"% and r = [ 25|, we have

Ver < O )k + 1) = O(nl") (k + 1) 1%1)

e For k > 2 the bound claimed by this theorem is O(n?) and thus trivial.

e For k = 0, the bound is O(nl%2) and alreay known.



Lemma Suppose that 1 < k < g5 — 1, which implies 2d < r < 5. Then
P(k) > ca(k+1)7°

for a suitable ¢; > 0 depending only on d.
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e Since k < 3,

- > (](JLJrl —1)/n> 2(,{;1“). (recall r = Lkiﬂj)

k 2k
Sl -k

e Since k£ < 7, we can use the inequality 1 —z > e 2"

e Finally,

d —4kr/n> L 1—d
~ dn n (k+1)-d)6 = calk +1)



