Arrangement of Hyperplanes (Chapter 6.1 and Chapter 6.3)

For a set H of hyperplanes in \mathbb{R}^{d}, the arrangement of H is a partition of \mathbb{R}^{d} into relatively open convex faces.

- 0-faces called vertices
- 1-faces called edges
- (d-1)-faces called facets
- d-faces called cells.

Faces in the arrangement

- The cells are the connected components of $\mathbb{R}^{d} \backslash \bigcup H$.
- The facets are obtained from the ($d-1$)-dimensional arrangements induced in the hyperplanes of H by their intersections with the other hyperplanes - For each $h \in H$, take the connected components of $h \backslash \bigcup_{h^{\prime} \in H, h^{\prime} \neq h} h^{\prime}$.
- k-faces are obtained from every possible k-flat L defined as the intersection of some $d-k$ hyperplanes of H
- The k-faces of the arrangement lying within L are the connected components of $L \backslash\left(H \backslash H_{L}\right)$, where $H_{L}=\{h \in H \mid L \subseteq h\}$

Sign Vectors:

A face F of the arrangement of H can be described by its sign vectors

- Fix the orientation of each hyperplane
- Each $h \in H$ partitions \mathbb{R}^{d} into three regions: h itself and the two open half-spaces determined by it.
- Choose one of these open half-spaces as positive and denote it by h^{\oplus}, and we let the other one be negative and dnote it by h^{\ominus},
- The sign vector of F is defined as $\sigma(F)=\left(\sigma_{h} \mid h \in H\right)$ where

$$
\sigma_{h}=\left\{\begin{array}{r}
+1 \text { if } F \subseteq h^{\oplus}, \\
0 \text { if } F \subseteq h, \\
-1 \text { if } F \subseteq h^{\ominus} .
\end{array}\right.
$$

The face F is determined by its sign vector, since we have

$$
F=\bigcap_{h \in H} h^{\sigma_{h}},
$$

where $h_{0}=h, h^{1}=h^{\oplus}$, and $h^{-1}=h^{\ominus}$.

Not all possible sign vectors corresponds to nonempty faces

- For n lines, there 3^{n} sign vectors but only $O\left(n^{2}\right)$ faces.

Counting the cells in a hyperplane arrangement

- General Position
- The intersection of every k hyperplanes is $(d-k)$-dimensional, $k=$ $2,3, \ldots, d+1$.
- If $H \geq d+1$, then it suffices to require that every d hyperplanes intersect at a single point, and no $d+1$ hyperplane have a common point.
- If H is in general position, the arrangement of H is called simple
- Every d-tuple of hyperplanes in a simple arrangement determines exactly one vertex, so a simple arrangement of n hyperplanes has exactly $\binom{n}{d}$ vertices.
- The number of cells will be shown to be $O\left(n^{d}\right)$ for d fixed.

Proposition

The number of cell (d-faces) in a simple arrangement of n hyperplane in \mathbb{R}^{d} equals

$$
\phi_{d}(n)=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{d}
$$

First proof

- Proceed by induction on the dimension d and the number of hyperplanes n.
- For $d=1$
- We have a line and n points in it
- These divide the line into $n+1$ one-dimensional pieces, and the statement holds.
- For $n=0$ and $d \geq 1$, it trivially holds.
- Suppose we are in dimension d, we have $n-1$ hyperplanes, and we insert another one h
- By the inductive hypothesis, the $n-1$ previous hyperplanes divide the newly inserted hyperplane h into $\phi_{d-1}(n-1)$ cells
- Each such ($d-1$)-dimensional caell within h partitions one d-dimensional cell into exactly two cells.
- The total increase in the number of cells caused by inserting h is $\phi_{d-1}(n-$ 1), so

$$
\phi_{d}(n)=\phi_{d}(n-1)+\phi_{d-1}(n-1) .
$$

- Together with the intial condition (for $d=1$ and $n=0$), it remains to check the formula satisfies the recurrence

$$
\left.\begin{array}{rl}
\phi_{d}(n-1)+\phi_{d-1}(n-1)= & \left.\binom{n-1}{0}+\left[\begin{array}{c}
n-1 \\
1
\end{array}\right)+\binom{n-1}{0}\right] \\
& +\left[\binom{n-1}{2}+\binom{n-1}{1}\right]+\cdots\left[\binom{n-1}{d}+\binom{n-1}{d-1}\right] \\
0
\end{array}\right)+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{d}=\phi_{d}(n) . .
$$

second proof

- Proceed by induction on d, the case $d=0$ being trivial.
- Let H be a set of n hyperplanes in \mathbb{R}^{d} in general posistion
- Assume no hyperplanes of H is hortizontal
- Assume no two vertices of the arrangement have the same vertical-level (x_{d}-coordinate)
- Let g be an auxiliary horizonal hyperplane lying below all the vertices
- A cell of the arrangement of H is
- bounded from below, and in this case it has a unique vertex,
- or is not bounded from below, and then it intersects g
- The number of cells of the former type is the same as the number of vertices, which is $\binom{n}{d}$.
- The cells of the latter type correspond to the cells in the $(d-1)$-dimensional arrangement induced within g by the hyperplanes of H, and their number if thues $\phi_{d-1}(n)$.

Level of a point

For a set H of hyperplanes in \mathbb{R}^{d} and a point $x \in \mathbb{R}^{d}$, the level of x with respect to H is the number of hyperplanes in H lying strictly below x.

k-level

For a set H of n hyperplanes in \mathbb{R}^{d}, the k-level of the arrangement of H is the closure of facets in the arrangement whose interior points have a level of k with respect to H.

- The size of the k-level is counted by its vertices
- For $d=2$, its size is $\Omega\left(n 2^{\sqrt{\log k}}\right)$ and $O\left(n k^{1 / 3}\right)$
- For $d=3$, its size is $\Omega\left(n k 2^{\sqrt{\log k}}\right)$ amd $O\left(n k^{3 / 2}\right)$.
- The k-level is dual to the k-set

At most k-levels For a set H of n hyperplanes in \mathbb{R}^{d}, the at most k-levels, denoted by $\leq k$-level, is the collection of i-level for $0 \leq i \leq k$.

- its size is counted by the number of vertices.

0 -level has $O\left(n^{\lfloor d / 2\rfloor}\right)$ vertices

- The vertices of the 0 -level are the vertices of the cell lying below all the hyperplanes
- This cell is the intersection of at most n half-space.

Clarkson's theorem on levels

The total number of vertices of level at most k in an arrangement of n hyperplanes in \mathbb{R}^{d} is at most

$$
O\left(n^{\lfloor d / 2\rfloor}(k+1)^{[d / 2\rceil}\right)
$$

The lower bound for the number of vertices of level at most k is

$$
\Omega\left(n^{\lfloor d / 2\rfloor} k^{[d / 2\rceil}\right)
$$

- Consider a set of $\frac{n}{k}$ hyperplanes such taht the lower unbounded cell in their arrangement is a convex polyhedron with $\Omega\left(\binom{n}{k}^{\lfloor d / 2\rfloor}\right)$ vertices
- Replace each of the hyperplanes by k very close parallel hyperplanes.
- Each vertex of level 0 in the original arrangement gives rise to $\Omega\left(k^{d}\right)$ vertices of level at most k in the new arrangement

Proof of Clarkson's Theorem for $d=2$

- Let H be a set of n lines in general position
- Let p denote a certain suitable number in the interval $(0,1)$
- Imagine a random experiment
- Choose a subset $R \subseteq H$ at random, by including each line $h \in H$ into R with probability p
* the choices are independent for distinct lines h.
- Consider the arrangement of R, and let $f(R)$ denote the number of vertices of level 0 in the arrangement of R.
- Since R is randomly chosen, f is a random variable.
- Estimate the expectation of f, denoted by $E[f]$.
- For any specific set R, we have $f(R) \leq|R|$, so $E[f] \leq E[|R|]=p n$.
- Bound $E[f]$ from below
* For each vertex v of the arrangement of H, we define an event A_{v} meaning " v becomes one of the vertices of level 0 in the arrangement of R."
* That is, A_{v} occurs if v contribute 1 to the value of f
* A_{v} occurs if and only if the following two conditions are satisfied:
- Both lines determining v lie in R
- None of the lines of H lying below v falls into R

These must be in R

These must NOT be in R

$$
\operatorname{Prob}\left[A_{v}\right]=p^{2}(1-p)^{l(v)},
$$

where $l(v)$ denotes the level of the vertex v

- Let V be the set of all vertices of the arrangement of H, and let $V_{\leq k} \subseteq V$ be the set of vertices of level at most k.

$$
\begin{gathered}
E[f]=\sum_{v \in V} \operatorname{Prob}\left[A_{v}\right] \geq \sum_{v \in V_{\leq k}} \operatorname{Prob}\left[A_{v}\right] \\
=\sum_{v \in V_{\leq k}} p^{2}(1-p)^{l(v)} \geq \sum_{v \in V_{\leq k}} p^{2}(1-p)^{k}=\left|V_{\leq k}\right| \cdot p^{2}(1-p)^{k} .
\end{gathered}
$$

- Since $n p \geq E[f] \geq\left|V_{\leq k}\right| \cdot p^{2}(1-p)^{k}$,

$$
\left|V_{\leq k}\right| \leq \frac{n}{p(1-p)^{k}}
$$

- Choose the number p to minimize the right hand side
- A convenient value is $p=\frac{1}{k+1}$
- Since $\left(1-\frac{1}{k+1}\right)^{k} \geq e^{-1}>\frac{1}{3}$ for all $k \geq 1$,

$$
\left|V_{\leq k}\right| \leq 3(k+1) n
$$

Proor for an arbitrary dimensions

- Define an integer parameter r and choose a random r-element subset $R \subseteq H$, with all $\binom{n}{r}$ subsets being equally probable.
- Define $f(R)$ as the number of vertices of level 0 with respect to R, and estimate $E[f]$ in two ways (from up and below).
- Since $f(R)=O\left(r^{\lfloor d / 2\rfloor}\right)$ for all R,

$$
E[f]=O\left(r^{\lfloor d / 2\rfloor}\right)
$$

- Let V be the set of all vertices in the arrangement of $H, V_{\leq k}$ be the set of vertices in V whose level with respect to H is at most k, and A_{v} be the event " v is a vertex of level 0 with respect to R."
- The conditions for A_{v} are
- All the d hyperplane defining the vertex v fall in R.
- None of the hyperplane of H lying below v fall in R.
- If $l=l(v)$ is the level of v, then

$$
\operatorname{Prob}\left[A_{v}\right]=\frac{\binom{n-d-l}{r-l}}{\binom{n}{r}} .
$$

$-P(l)$ is a decreasing function.

- Therefore,

$$
E[f]=\sum_{v \in V} \operatorname{Prob}\left[A_{v}\right] \geq V_{\leq k} \cdot P(k) .
$$

- Combining with $E[f]=O\left(r^{\lfloor d / 2\rfloor}\right)$, we obtain

$$
\left|V_{\leq k}\right| \leq \frac{O\left(r^{\lfloor d / 2\rfloor}\right)}{P(k)}
$$

- Set r be $\left\lfloor\frac{n}{k+1}\right\rfloor$.
- as inspired by the case for $d=2$, where $p n=\frac{n}{k+1}$.
- We will prove latter that If $1 \leq k<\frac{n}{2 d}-1$,

$$
P(k) \geq c_{d}(k+1)^{-d}
$$

for a suitable $c_{d}>0$ depending only on d.

- Combining $\left|V_{\leq k}\right| \leq \frac{O\left(r^{\lfloor d / 2\rfloor}\right)}{P(k)}, P(k) \geq c_{d}(k+1)^{-d}$, and $r=\left\lfloor\frac{n}{k+1}\right\rfloor$, we have

$$
\left|V_{\leq k}\right| \leq O\left(r^{\lfloor d / 2\rfloor}\right)(k+1)^{d}=O\left(n^{\lfloor d / 2\rfloor}(k+1)^{\lceil d / 2\rceil}\right)
$$

- For $k \geq \frac{n}{2 d}$, the bound claimed by this theorem is $O\left(n^{d}\right)$ and thus trivial.
- For $k=0$, the bound is $O\left(n^{\lfloor d / 2\rfloor}\right)$ and alreay known.

Lemma Suppose that $1 \leq k \leq \frac{n}{2 d}-1$, which implies $2 d \leq r \leq \frac{n}{2}$. Then

$$
P(k) \geq c_{d}(k+1)^{-d}
$$

for a suitable $c_{d}>0$ depending only on d.

$$
\begin{gathered}
P(k)=\frac{\binom{n-d-k}{r-d}}{\binom{n}{r}} \\
=\frac{(n-d-k)(n-d-k-1) \cdots(n-k-r+1)}{n(n-1) \cdots(n-r+1)} \cdot r(r-1) \cdots(r-d+1) \\
=\frac{r(r-1) \cdots(r-d+1)}{n(n-1) \cdots(n-d+1)} \cdot \frac{n-d-k}{n-d} \cdot \frac{n-d-k-1}{n-d-1} \cdots \frac{n-k-r-1+1}{n-r+1} \\
\geq\left(\frac{r}{2 n}\right)^{d}\left(1-\frac{k}{n-d}\right)\left(1-\frac{k}{n-d-1}\right) \cdots\left(1-\frac{k}{n-r+1}\right) \\
\geq\left(\frac{r}{2 n}\right)^{d}\left(1-\frac{k}{n-r+1}\right)^{r}
\end{gathered}
$$

- Since $k<\frac{n}{2}$,

$$
\begin{aligned}
& -\frac{r}{n} \geq\left(\frac{n}{k+1}-1\right) / n \geq \frac{1}{2(k+1)} .\left(\text { recall } r=\left\lfloor\frac{n}{k+1}\right\rfloor .\right) \\
& -1-\frac{k}{n-r+1} \geq 1-\frac{2 k}{n} .
\end{aligned}
$$

- Since $k \leq \frac{n}{4}$, we can use the inequality $1-x \geq e^{-2 x}$
- Finally,

$$
P(k) \geq\left(\frac{r}{d n}\right)^{d}\left(1-\frac{2 k}{n}\right)^{r} \geq\left(\frac{1}{(k+1) \cdot d}\right)^{d} e^{-4 k r / n} \geq c_{d}(k+1)^{-d}
$$

