
Arrangement of Hyperplanes (Chapter 6.1 and Chapter 6.3)

For a set H of hyperplanes in Rd, the arrangement of H is a partition of Rd

into relatively open convex faces.

• 0-faces called vertices

• 1-faces called edges

• (d− 1)-faces called facets

• d-faces called cells.

Faces in the arrangement

• The cells are the connected components of Rd \
⋃
H .

• The facets are obtained from the (d−1)-dimensional arrangements induced

in the hyperplanes of H by their intersections with the other hyperplanes

– For each h ∈ H , take the connected components of h \
⋃
h′∈H,h′ 6=h h

′.

• k-faces are obtained from every possible k-flat L defined as the intersection

of some d− k hyperplanes of H

– The k-faces of the arrangement lying within L are the connected com-

ponents of L \ (H \HL), where HL = {h ∈ H | L ⊆ h}

Sign Vectors:

A face F of the arrangement of H can be described by its sign vectors

• Fix the orientation of each hyperplane

– Each h ∈ H partitions Rd into three regions: h itself and the two open

half-spaces determined by it.

– Choose one of these open half-spaces as positive and denote it by h⊕,

and we let the other one be negative and dnote it by h	,

• The sign vector of F is defined as σ(F ) = (σh | h ∈ H) where

σh =


+1 if F ⊆ h⊕,

0 if F ⊆ h,

−1 if F ⊆ h	.



The face F is determined by its sign vector, since we have

F =
⋂
h∈H

hσh,

where h0 = h, h1 = h⊕, and h−1 = h	.

h1

h2

h3 h4

–+–+ 00+–

– 0 – –

Not all possible sign vectors corresponds to nonempty faces

• For n lines, there 3n sign vectors but only O(n2) faces.

Counting the cells in a hyperplane arrangement

• General Position

– The intersection of every k hyperplanes is (d − k)-dimensional, k =

2, 3, . . . , d + 1.

– If H ≥ d + 1, then it suffices to require that every d hyperplanes

intersect at a single point, and no d + 1 hyperplane have a common

point.

• If H is in general position, the arrangement of H is called simple

• Every d-tuple of hyperplanes in a simple arrangement determines exactly

one vertex, so a simple arrangement of n hyperplanes has exactly
(
n
d

)
vertices.

• The number of cells will be shown to be O(nd) for d fixed.



Proposition

The number of cell (d-faces) in a simple arrangement of n hyperplane in Rd

equals

φd(n) =

(
n

0

)
+

(
n

1

)
+ · · · +

(
n

d

)
First proof

• Proceed by induction on the dimension d and the number of hyperplanes

n.

• For d = 1

– We have a line and n points in it

– These divide the line into n+ 1 one-dimensional pieces, and the state-

ment holds.

• For n = 0 and d ≥ 1, it trivially holds.

• Suppose we are in dimension d, we have n− 1 hyperplanes, and we insert

another one h

• By the inductive hypothesis, the n − 1 previous hyperplanes divide the

newly inserted hyperplane h into φd−1(n− 1) cells

• Each such (d−1)-dimensional caell within h partitions one d-dimensional

cell into exactly two cells.

• The total increase in the number of cells caused by inserting h is φd−1(n−
1), so

φd(n) = φd(n− 1) + φd−1(n− 1).

• Together with the intial condition (for d = 1 and n = 0), it remains to

check the formula satisfies the recurrence

φd(n− 1) + φd−1(n− 1) =
(
n−1
0

)
+ [
(
n−1
1

)
+
(
n−1
0

)
]

+[
(
n−1
2

)
+
(
n−1
1

)
] + · · · [

(
n−1
d

)
+
(
n−1
d−1
)
]

=
(
n−1
0

)
+
(
n
1

)
+
(
n
2

)
+ · · · +

(
n
d

)
= φd(n).



second proof

• Proceed by induction on d, the case d = 0 being trivial.

• Let H be a set of n hyperplanes in Rd in general posistion

– Assume no hyperplanes of H is hortizontal

– Assume no two vertices of the arrangement have the same vertical-level

(xd-coordinate)

• Let g be an auxiliary horizonal hyperplane lying below all the vertices

• A cell of the arrangement of H is

– bounded from below, and in this case it has a unique vertex,

– or is not bounded from below, and then it intersects g

• The number of cells of the former type is the same as the number of

vertices, which is
(
n
d

)
.

• The cells of the latter type correspond to the cells in the (d−1)-dimensional

arrangement induced within g by the hyperplanes of H , and their number

if thues φd−1(n).

Level of a point

For a set H of hyperplanes in Rd and a point x ∈ Rd, the level of x with

respect to H is the number of hyperplanes in H lying strictly below x.

k-level

For a set H of n hyperplanes in Rd, the k-level of the arrangement of H is

the closure of facets in the arrangement whose interior points have a level of

k with respect to H .

• The size of the k-level is counted by its vertices

• For d = 2, its size is Ω(n2
√
log k) and O(nk1/3)

• For d = 3, its size is Ω(nk2
√
log k) amd O(nk3/2).

• The k-level is dual to the k-set



At most k-levels For a set H of n hyperplanes in Rd, the at most k-levels,

denoted by ≤ k-level, is the collection of i-level for 0 ≤ i ≤ k.

• its size is counted by the number of vertices.

≤ 2-level

0-level has O(nbd/2c) vertices

• The vertices of the 0-level are the vertices of the cell lying below all the

hyperplanes

• This cell is the intersection of at most n half-space.

Clarkson’s theorem on levels

The total number of vertices of level at most k in an arrangement of n hy-

perplanes in Rd is at most

O(nbd/2c(k + 1)dd/2e)

The lower bound for the number of vertices of level at most k is

Ω(nbd/2ckdd/2e)

• Consider a set of n
k hyperplanes such taht the lower unbounded cell in

their arrangement is a convex polyhedron with Ω(
(
n
k

)bd/2c
) vertices

• Replace each of the hyperplanes by k very close parallel hyperplanes.

• Each vertex of level 0 in the original arrangement gives rise to Ω(kd)

vertices of level at most k in the new arrangement



Proof of Clarkson’s Theorem for d = 2

• Let H be a set of n lines in general position

• Let p denote a certain suitable number in the interval (0, 1)

• Imagine a random experiment

– Choose a subset R ⊆ H at random, by including each line h ∈ H into

R with probability p

∗ the choices are independent for distinct lines h.

– Consider the arrangement of R, and let f (R) denote the number of

vertices of level 0 in the arrangement of R.

– Since R is randomly chosen, f is a random variable.

– Estimate the expectation of f , denoted by E[f ].

– For any specific set R, we have f (R) ≤ |R|, so E[f ] ≤ E[|R|] = pn.

– Bound E[f ] from below

∗ For each vertex v of the arrangement of H , we define an event Av

meaning “v becomes one of the vertices of level 0 in the arrangement

of R.”

∗ That is, Av occurs if v contribute 1 to the value of f

∗ Av occurs if and only if the following two conditions are satisfied:

· Both lines determining v lie in R

· None of the lines of H lying below v falls into R

These must be in R

These must NOT be in R

•
Prob[Av] = p2(1− p)l(v),

where l(v) denotes the level of the vertex v



• Let V be the set of all vertices of the arrangement of H , and let V≤k ⊆ V

be the set of vertices of level at most k.

E[f ] =
∑
v∈V

Prob[Av] ≥
∑
v∈V≤k

Prob[Av]

=
∑
v∈V≤k

p2(1− p)l(v) ≥
∑
v∈V≤k

p2(1− p)k = |V≤k| · p2(1− p)k.

• Since np ≥ E[f ] ≥ |V≤k| · p2(1− p)k,

|V≤k| ≤
n

p(1− p)k
.

• Choose the number p to minimize the right hand side

– A convenient value is p = 1
k+1

– Since
(
1− 1

k+1

)k ≥ e−1 > 1
3 for all k ≥ 1,

|V≤k| ≤ 3(k + 1)n.

Proor for an arbitrary dimensions

• Define an integer parameter r and choose a random r-element subset

R ⊆ H , with all
(
n
r

)
subsets being equally probable.

• Define f (R) as the number of vertices of level 0 with respect to R, and

estimate E[f ] in two ways (from up and below).

• Since f (R) = O(rbd/2c) for all R,

E[f ] = O(rbd/2c).

• Let V be the set of all vertices in the arrangement of H , V≤k be the set of

vertices in V whose level with respect to H is at most k, and Av be the

event “v is a vertex of level 0 with respect to R.”

• The conditions for Av are

– All the d hyperplane defining the vertex v fall in R.

– None of the hyperplane of H lying below v fall in R.



• If l = l(v) is the level of v, then

Prob[Av] =

(
n−d−l
r−d

)(
n
r

) .

• Let P (l) denote
(n−d−lr−d )

(nr)
.

– P (l) is a decreasing function.

• Therefore,

E[f ] =
∑
v∈V

Prob[Av] ≥ V≤k · P (k).

• Combining with E[f ] = O(rbd/2c), we obtain

|V≤k| ≤
O(rbd/2c)

P (k)
.

• Set r be b n
k+1c.

– as inspired by the case for d = 2, where pn = n
k+1.

• We will prove latter that If 1 ≤ k < n
2d − 1,

P (k) ≥ cd(k + 1)−d

for a suitable cd > 0 depending only on d.

• Combining |V≤k| ≤ O(rbd/2c)
P (k) , P (k) ≥ cd(k+ 1)−d, and r = b n

k+1c, we have

|V≤k| ≤ O(rbd/2c)(k + 1)d = O
(
nbd/2c(k + 1)dd/2e

)
• For k ≥ n

2d, the bound claimed by this theorem is O(nd) and thus trivial.

• For k = 0, the bound is O(nbd/2c) and alreay known.



Lemma Suppose that 1 ≤ k ≤ n
2d − 1, which implies 2d ≤ r ≤ n

2 . Then

P (k) ≥ cd(k + 1)−d

for a suitable cd > 0 depending only on d.

P (k) =

(
n−d−k
r−d

)(
n
r

)
=

(n− d− k)(n− d− k − 1) · · · (n− k − r + 1)

n(n− 1) · · · (n− r + 1)
· r(r − 1) · · · (r − d + 1)

=
r(r − 1) · · · (r − d + 1)

n(n− 1) · · · (n− d + 1)
· n− d− k

n− d
· n− d− k − 1

n− d− 1
· · · n− k − r − 1 + 1

n− r + 1

≥
( r

2n

)d(
1− k

n− d
)(

1− k

n− d− 1

)
· · ·
(
1− k

n− r + 1

)
≥
( r

2n

)d(
1− k

n− r + 1

)r
• Since k < n

2 ,

– r
n ≥ ( n

k+1 − 1)/n ≥ 1
2(k+1). (recall r = b n

k+1c.)
– 1− k

n−r+1 ≥ 1− 2k
n .

• Since k ≤ n
4 , we can use the inequality 1− x ≥ e−2x

• Finally,

P (k) ≥ (
r

dn
)d(1− 2k

n
)r ≥ (

1

(k + 1) · d
)de−4kr/n ≥ cd(k + 1)−d


