Cosntruction of AVD

Rolf Klein, Kurt Mehlhorn, Stefan Meiser, "Randomized Incremental Construction of Abstract Voronoi Diagrams," Computational Geometry, vol 3., no. 3, pp.157-184, 1993.

Finite Part of AVD

- Let Γ be a simple closed curve such that all intersections between bisectring curve lie inside the inner domain of Γ
- Consider a site ∞, define $J(p, \infty)=J(\infty, p)$ to be Γ for all sites $p \in S$, and $D(\infty, p)$ to be the outer domain of Γ for all sites $p \in S$.

Incremental Construction

- Let $s_{1}, s_{2}, \ldots, s_{n}$ be a random squence of S
- Let R_{i} be $\left\{\infty, s_{1}, s_{2}, \ldots, s_{i}\right\}$
- Iteratively construct $V\left(R_{2}\right), V\left(R_{3}\right), \ldots, V\left(R_{n}\right)$

General Position Assumption

- No $J(p, q), J(p, r)$ and $J(p, t)$ intersect the same point for any four distinct sites, $p, q, r, t \in S$
\rightarrow Degree of a Voronoi vertex is 3
Remark
- For $1 \leq i \leq n$ and for all sites $p \in R_{i}, \operatorname{VR}\left(p, R_{i}\right)$ is simply connected, i.e., path connected and no hole
- If $J(p, q)$ and $J(p, r)$ intersect at a point $x, J(q, r)$ must pass through x

Basic Operations

- Given $J(p, q)$ and a point v, determine $v \in D(p, q), v \in J(p, q)$, or $v \in D(q, p)$
- Given a point v in common to three bisecting curves, determine the clockwise order of the curves around v
- Given points $u \in J(p, q)$ and $w \in J(p, r)$ and orientation of these curves , determine the first point of $\left.J(p, r)\right|_{(w, \infty]}$ crossed by $\left.J(p, q)\right|_{(v, \infty]}$
- Given $J(p, q)$ with an orientation and points v, w, x on $J(p, q)$, determine if v come before w on $\left.J(p, q)\right|_{(x, \infty]}$

Notation: Give a connected subset A of $R^{2}, \operatorname{int} A, \operatorname{bd} A$, and $\operatorname{cl} A$ mean the interior, the boundary, and the closure of A, respectively.

Conflict Graph $G(R)$, where R is R_{i} for $2 \leq i \leq n$

- bipartitle graph (U, V, E)
- U : Voronoi edges of $V(R)$
- V : Sites in $S \backslash R$
- $E:\{(e, s) \mid e \in V(R), s \in S \backslash R, e \cap \operatorname{VR}(s, R \cup\{s\}) \neq \emptyset\}$
- a conflict relation beteween e and s.

Remark:
a Voronoi edge is defined by 4 sites under the general position assumption

Lemma 1

Let $R \subseteq S$ and $t \in S \backslash R$. Let e be the Voronoi edge between $\operatorname{VR}(p, R)$ and $\operatorname{VR}(q, R) . e \cap \operatorname{VR}(t, R \cup\{t\})=e \cap \mathrm{R}(t,\{p, q, t\})$. (Local Test is enough) Proof:
$\subseteq:$ Immediately from $\operatorname{VR}(t, R \cup\{t\}) \subseteq \operatorname{VR}(t,\{p, q, t\})$
\supseteq : Let $x \in e \cap \operatorname{VR}(t,\{p, q, t\})$

- Since $x \in e, x \in \operatorname{VR}(p, R) \cup \operatorname{VR}(q, R)$ and $x \notin \operatorname{VR}(r, R) \supseteq \operatorname{VR}(r, R \cup$ $\{t\})$ for any $r \in R \backslash\{p, q\}$.
- Since $x \in \operatorname{VR}(t,\{p, q, t\}), x \notin \operatorname{VR}(p,\{p, q, t\}) \cup \operatorname{VR}(q,\{p, q, t\}) \supseteq$ $\operatorname{VR}(p, R \cup\{t\}) \cup \operatorname{VR}(q, R \cup\{t\})$
- $x \notin \mathrm{VR}(r, R \cup\{t\})$ for any site $r \in R \rightarrow x \in \operatorname{VR}(t, R \cup\{t\})$

Insertiong $s \in S \backslash R$ to compute $V(R \cup\{s\})$ and $G(R \cup\{s\})$ from $V(R)$ and $G(R)$. Handle a conflict between s and a Voronoi edge e of $\operatorname{VR}(R)$

Lemma 2

$\operatorname{cl} e \cap \operatorname{cl} \operatorname{VR}(s, R \cup\{s\}) \neq \emptyset$ implies $e \cap \operatorname{VR}(s, R \cup\{s\})=\emptyset$
proof

- Let x belong to cl $e \cap \operatorname{cl} \operatorname{VR}(s, R \cup\{s\})$
- x is an endpoint of e :
$-x$ is the intersection among three curves in R
- For any $r \in R, J(s, r)$ cannot pass through x due to the general position assumption
$-x \in D(s, r) \rightarrow$ the neighborhood of $x \in D(s, r)$
$-\exists y \in e$ belongs to $\operatorname{VR}(s, R \cup\{s\})$
- $x \in e \cap \operatorname{bd} \operatorname{VR}(s, R \cup\{s\})$
$-x \in J(p, q) \cap J(s, r)$
- a point $y \in e$ in the neighborhood of x such that $y \in \operatorname{VR}(s, R \cup\{s\})$

Let \mathcal{Q} be $\operatorname{VR}(s, R \cup\{s\})$

Lemma 3

$\mathcal{Q}=\emptyset$ if and only if $\operatorname{deg}_{G(R)}(s)=0$ proof (\rightarrow) If $\mathcal{Q}=\emptyset, \operatorname{deg}_{G(R)}(s)=0$
(\leftarrow)

- $\operatorname{deg}_{G(R)}(s)=0$ implies cl $\mathcal{Q} \subseteq$ int $\operatorname{VR}(r, R)$ for some $r \in R$
- $\mathrm{VR}(r, R \cup\{s\})=\operatorname{VR}(r, R)-\mathcal{Q}$
- Since $\operatorname{VR}(r, R \cup\{s\})$ must be simply connected, $\mathcal{Q}=\emptyset$

Lemma 4

Let I be $V(R) \cap \mathrm{cl} \mathcal{Q}$.
I is a connected set which intersects bd \mathcal{Q} in at least two points.
Proof:

- bd \mathcal{Q} is a closed curve which does not go through any vertex of $V(R)$ due to the general position assumption.
- Let $I_{1}, I_{2}, \ldots, I_{k}$ be connected components of I
- Claim: $I_{j}, 1 \leq j \leq k$, contains two points of bd \mathcal{Q}.
- If I_{j} contains no point, $I_{j} \subseteq$ int \mathcal{Q}. In other words, for some $r \in$ $R, \mathrm{VR}(r, R)$ contains I_{j}, contradicting that $\mathrm{VR}(r, R)$ must be simply connected
- If I_{j} intersects exactly one point x on $\operatorname{bd} \mathcal{Q}$, let e be the Voronoi edge of $V(R)$ which contains x. Then both sides of e belong to the same Voronoi region. There exists a contradiction.

- Assume the contrary that $k \geq 2$
- There is a path $P \subseteq \operatorname{cl} \mathcal{Q}-\left(\cup_{1 \leq j \leq k} I_{j}\right)$ connects two points on bd \mathcal{Q} such that one component of $\mathcal{Q}-P$ contains I_{1} and the other component contains I_{2}.
- Let x, y be the two endpoints of P and let $r \in R$ such that $P \subseteq$ $\operatorname{VR}(r, R)$.
- Since $x, y \notin V(R), \operatorname{VR}(r, R \cup\{s\})=\operatorname{VR}(r, R)-\mathcal{Q} \neq \emptyset \rightarrow x, y \in$ $\mathrm{cl} \operatorname{VR}(r, R \cup\{s\})$
- Since $x, y \in \mathrm{cl} \operatorname{VR}(r, R \cup\{s\})$, there is a path $P^{\prime} \subseteq \mathrm{VR}(r, R \cup\{s\})$ with endpoints x and y.
- $P \circ P^{\prime}$ is contained in $\mathrm{cl} \operatorname{VR}(r, R)$ and contains either I_{1} and I_{2}, contradicting cl $\mathrm{VR}(r, R)$ is simply connected

Lemma 5

Let e be an edge of $V(R)$. If $e \cap \mathcal{Q} \neq \emptyset$,

- either $(e \cap \mathcal{Q}=V(R) \cap \mathcal{Q}$ or $e \cap \mathcal{Q}$ is a single component),
- or $e-\mathcal{Q}$ is a single component

Proof

- Assume first $e \cap \mathcal{Q}=V(R) \cap \mathcal{Q}$
- Since $V(R) \cap \mathcal{Q}$ is connected, $e \cap \mathcal{Q}$ is connected
- Assume next t $e \cap \mathcal{Q} \neq V(R) \cap \mathcal{Q}$
- At least one endpoint of e is contained in \mathcal{Q}
- For every point $x \in e \cap \mathcal{Q}$, one of the subpaths of e connecting x to an endpoint of e must be contained in \mathcal{Q}
$-e \cap \mathcal{Q}$ or $e-\mathcal{Q}$ is a single component
Rough Idea
- Let L be $\{e \in V(R) \mid(e, s) \in G(R)\}$
- For every edge $e \in L$, let e^{\prime} be $e-\mathcal{Q}=e-\operatorname{VR}(s, R \cup\{s\})$. If e is an edge between $\operatorname{VR}(p, R)$ and $\operatorname{VR}(q, R), e^{\prime}=e-D(s, p)=e-D(s, q)$
- Let B be $\left\{x \in x\right.$ is an endpoint of e^{\prime} but is not an endpoint of $\left.e\right\}=$ $V(R) \cap$ bd \mathcal{Q}
- bd Q is a cyclic ordering on the points in B

Step 1: Compute e^{\prime} for each edge $e \in L$
Step 2: Compute B and cyclic ordering on B induced by bd \mathcal{Q}
Step 3: Let x_{1}, \ldots, x_{k} be the set B in its cyclic ordering $\left(x_{k+1}=x_{1}\right)$, and let r_{i} such that $\left(x_{i}, x_{i+1}\right) \in \operatorname{VR}\left(r_{i}, r\right)$

- For $1 \leq i \leq k$, add the part of $J\left(r_{i}, s\right)$ with endpoints x_{i} and x_{i+1}

Lemma 6

$V(R \cup\{s\})$ can be constructed from $V(R)$ and $G(R)$ in time $O\left(\operatorname{deg}_{G(R)}(s)+1\right)$

Lemma 7

$G(R \cup\{s\})$ can be constructed from $V(R)$ and $G(R)$ in $O\left(\Sigma_{(e, s) \in G(R)} \operatorname{deg}_{G(R)}(e)\right)$ time

1. Edges of $V(R \cup\{S\})$ which were alreay edges of $V(R)$ don't changes
2. Edges of $V(R \cup\{S\})$ which are parts of edges in L

- consider each edge $e \in L$
- If $e \subseteq \mathcal{Q}, e$ has to be deleted from conflict graph.
- If $e \nsubseteq \mathcal{Q}, e-\mathcal{Q}$ consists at most two subsegment.
- let e^{\prime} be one of the subsegments and let t be a site in $S \backslash R \cup\{s\}$.
- $e^{\prime} \cap \operatorname{VR}(t, R \cup\{s, t\})=e^{\prime} \cap_{r \in R} D(t, r) \cap D(t, s)=e^{\prime} \cap \operatorname{VR}(t, R \cup$ $\{t\}) \cap D(t, s) \subseteq e \cap \operatorname{VR}(t, R \cup\{t\})$
- Any site t in conflict with e^{\prime} must be in conflict with e
- Takes time $O\left(\Sigma_{e \in L} \operatorname{deg}_{G(R)}(e)\right)=O\left(\Sigma_{(e, s) \in G(R)} \operatorname{deg}_{G(R)}(e)\right)$

3. Edges of $\operatorname{VR}(s, R \cup\{s\})$ which are complete new

- Let e_{12} connect x_{1} and x_{2} in B
- Let e_{12} belong to $\operatorname{VR}(p, R)$ such that e_{12} belongs to $J(p, s)$
- Let $x_{1} \in e_{1}$ of $\operatorname{VR}(p, R)$ and $x_{2} \in e_{2}$ of $\operatorname{VR}(p, R)$
- Let P be the part of $\operatorname{bd} \operatorname{VR}(p, R)$ which connects x_{1} and x_{2} and is contained in $\mathrm{cl} \mathcal{Q}$.
- Lemma 8 will prove that If $t \in S \backslash R \cup\{s\}$ is in conflict with e_{12}, t must be in conflict with either e_{1}, e_{2} or one of the edges of P
- Each edge in L is involved at most twice, takes time $O\left(\Sigma_{(e, s) \in G(R)} \operatorname{deg}_{G(R)}(e)\right)$

Lemma 7

Let $t \in S \backslash(R \cup\{s\})$ and let t conflict with e_{12} in $V(R \cup\{s\})$ (as defined in Lemma 7). t conflicts with e_{1}, e_{2}, or one of the edges of P.

Proof:

- By the definition of conflict, a point $x \in e_{12}$ exists such that $x \in \mathrm{VR}(t, R \cup$ $\{s, t\} \subseteq \mathrm{VR}(t, R \cup\{t\})$
- Assume the contrary that t does not conflict with e_{1}, e_{2}, or one edge of P.
- For any sufficiently small neighborhood of $U\left(x_{1}\right)$ of $x_{1}, \operatorname{VR}(t, R \cup\{s, t\}) \cap$ $U\left(x_{1}\right) \subseteq \operatorname{VR}(t, R \cup\{t\}) \cap U\left(x_{1}\right)=\emptyset$, and it is also tru for x_{2}.
- Let p be a site in R such that $e_{12} \subseteq \operatorname{cl} \operatorname{VR}(p, R \cup\{s\})$, implying that $x_{1}, x_{2} \in \operatorname{cl} \operatorname{VR}(p, R \cup\{s\})$
- There is a path P^{\prime} from x_{1} to x_{2} completely inside $\operatorname{VR}(p, R\{s, t\}) \subseteq$ $\operatorname{VR}(p, R \cup\{t\})$.
- The cycle $x_{1} \circ P \circ x_{2} \circ P^{\prime}$ contains $\operatorname{VR}(t, R \cup\{t\})$ and is contained in $\operatorname{VR}(p, R \cup\{t\})$.
- contradict $\operatorname{VR}(p, R \cup\{t\})$ is simply connected

Theorem 1

Let $s \in S \backslash R . G(R \cup\{s\})$ and $V(R \cup\{s\})$ can be constructed from $G(R)$ and $V(R)$ in time $O\left(\Sigma_{(e, s) \in G(R)} \operatorname{deg}_{G(R)}(e)\right)$

Theorem 2

$V(S)$ can be computed in $O(n \log n)$ expected time

- $\Sigma_{3 \leq i \leq n} O\left(\Sigma_{\left(e, s_{i}\right) \in G\left(R_{i-1}\right)} \operatorname{deg}_{G\left(R_{i-1}\right)}(e)\right)$
- Let e be a Voronoi edge of $V\left(R_{i}\right)$ and let s be a site in $S \backslash R_{i}$ which conflicts e.
- The conflict relation (e, s) will be counted only once since the counting only occured when e is removed
- Let s_{j} be the earliest site in the sequence which conflicts with e. Then (e, s) will be counted in $\operatorname{deg}_{G\left(R_{j-1}\right)}(e)$
- Time proportional to the number of conflict relations between Voronoi edges in $\mathrm{U}_{2 \leq i \leq n} V\left(R_{i}\right)$ and sites in S
- The expected size of conflict history is $-C_{n}+\Sigma_{2 \leq i \leq n}(n-j+1) p_{j}$
- Kenneth L. Clarkson and Kurt Mehlhorn and Raimund Seidel, "Four Results on Randomized Incremental Constructions," Computational Geometry, vol. 3, no. 4, pp. 185-pp. 212.
$-C_{n}$ is the expected size of $\mathrm{U}_{2 \leq i \leq n} V\left(R_{i}\right)$
- p_{j} is the expected number of Voronoi edges defined by the same two sites in $V\left(R_{j}\right)$
- Since $C_{n}=O(n)$ and $p_{j}=O(1 / j)$, the expected run time is $O(n \log n)$

