Convexity

- \mathbb{R}^d deonotes the *d*-dimensional Euclidean space.
- A point in \mathbb{R}^d is a *d*-tupple of real numbers, $x = (x_1, x_2, \dots, x_d)$.
- Compare "linear" and "affine"

Linear Subspace

- \bullet a subset of \mathbb{R}^d closed under add tion of vectors and under multiplication by real numbers
- Geometric meaning
 - In \mathbb{R}^2 , the origin, all lines passing through the origin, and the whole of \mathbb{R}^2 .
 - in \mathbb{R}^3 , the origin, all lines passing through the origin, all planes passing through the origin, and the whole \mathbb{R}^3 .

Linear Combination:

A linear combination of points, $a_1, a_2, \ldots, a_n \in \mathbb{R}^d$ is given by

 $\alpha_1 a_1 + \alpha_2 a_2 + \ldots + \alpha_n a_n,$

where $\alpha_1, \alpha_2, \ldots, \alpha_n$ are real numbers.

Affine Subspace:

An affine subspace of \mathbb{R}^d has the form L + x, where L is a linear subspace of \mathbb{R}^d , and x is a vector in \mathbb{R}^d .

• In \mathbb{R}^3 , all points, all lines, all planes, and \mathbb{R}^3

Affine Combination

An affine combination of points $a_1, a_2, \ldots, a_n \in \mathbb{R}^d$ is given by

$$\alpha_1 a_1 + \alpha_2 a_2 + \ldots + \alpha_n a_n,$$

where $\alpha_1, \alpha_2, \ldots, \alpha_n$ are real numbers and $\alpha_1 + \alpha_2 + \ldots + \alpha_n = 1$

Linear Dependence

A set of points, $a_1, a_2, \ldots, a_n \in \mathbb{R}^d$, are **linearly dependent** if and only if there exists a set of real numbers, $\alpha_1, \alpha_2, \ldots, \alpha_n$, at least one of which is nonzero such that $\alpha_1 a_1 + \alpha_2 a_2 + \ldots + \alpha_n a_n = 0$

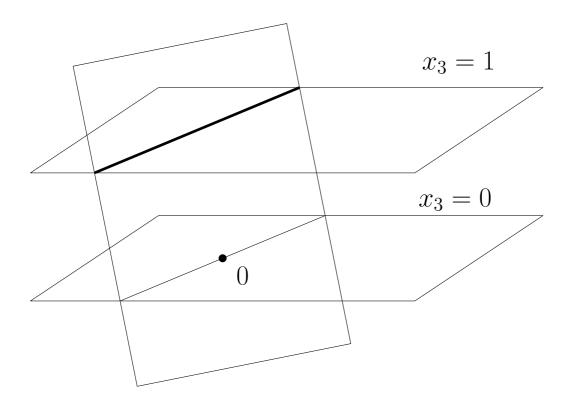
Affine Dependence

A set of points, $a_1, a_2, \ldots, a_n \in \mathbb{R}^d$, are **affinely dependent** if and only if there exists a set of real numbers, $\alpha_1, \alpha_2, \ldots, \alpha_n$, at least one of which is nonzero such that $\alpha_1 a_1 + \alpha_2 a_2 + \ldots + \alpha_n a_n = 0$ and $\alpha_1 + \alpha_2 + \ldots + \alpha_n = 0$.

Another viewpoint of affine dependence:

For a set of points, $a_1, a_2, \ldots, a_n \in \mathbb{R}^d$, let b_i be $(a_i, 1)$.

 a_1, a_2, \ldots, a_n , are affinely dependent if and only if b_1, b_2, \ldots, b_n are linearly dependent.



Additional viewpoint:

Let $a_1, a_2, \ldots, a_{d+1}$ be points in \mathbb{R}^d , and let A be $d \times d$ matrix with $a_i - a_{d+1}$ i^{th} column for $1 \leq i \leq d$.

Then $a_1, a_2, \ldots, a_{d+1}$ are affinely independent if and only if A has d linear independent columns, i.e., $det(A) \neq 0$.

A useful criterion of affine independence using a determinant.

Names for affine subspaces:

- (d-1)-dimensional: hyperplane
- 0-dimensional: point
- 1-dimensional: line
- 2-dimensional: plane
- k-dimensional: k-flat

hyerplane

• usuall specified by a single linear equation of the form:

$$a_1x_1 + a_2x_2 + \dots + a_dx_d = b.$$

- the left hand side can be written as the scalar product $\langle a, x \rangle$

• expressed as

$$\{x \in \mathbb{R}^d \mid \langle a, x \rangle = b\},\$$

where $a \in \mathbb{R}^d \setminus \{0\}$ and $b \in \mathbb{R}$.

• A (closed) half-space in \mathbb{R}^d is expressed as

$$\{x \in \mathbb{R}^d \mid \langle a, x \rangle \ge b\},\$$

– the hyerplane $\{x \in \mathbb{R}^d \mid \langle a, x \rangle = b\}$ is its boundary

k-flat:

- the intersection among d k hyperplanes
- viewed as a solution to a system

$$Ax = b$$

of linear equestions, where $x \in \mathbb{R}^d$ is regarded as a column vector, A is a $(d-k) \times d$ matrix, and $b \in \mathbb{R}^{d-k}$.

General Position Assumption

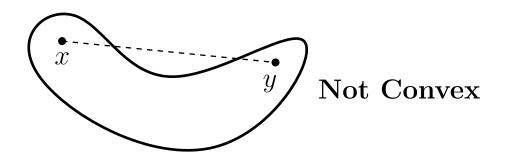
No k + 2 points belongs to the same k-flat

- no three points are on the same line, no four points are one the plane,
- a magic phrase to avoid unlikely coincidence.

Convex Set

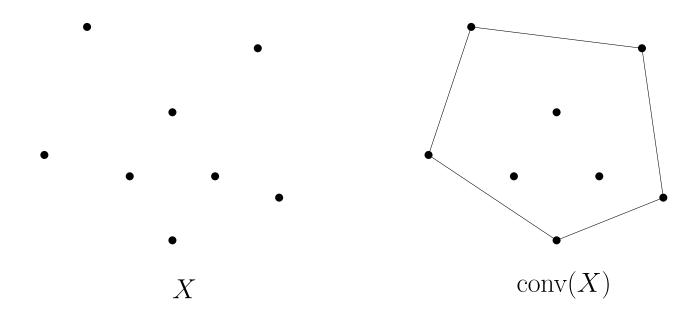
A set $C \subseteq \mathbb{R}^d$ is **convex** if for any two points $x, y \in C$, the whole segment \overline{xy} is also contained in C. In other words, for every $t \in [0, 1]$, the point tx + (1-t)y belongs to C.

The intersection of an arbitrary famility of convex sets is obviously convex.



Convex Hull

For a set $X \subseteq \mathbb{R}^d$, the **convex hull** of X, denoted by $\operatorname{conv}(X)$ is the intersection of all convex sets in \mathbb{R}^d containing X.



Convex Combination

For points $x_1, \ldots, x_n \in \mathbb{R}^d$ and nonnegative real numbers $t_1, \ldots, t_n, t_1x_1 + t_2x_2 + \cdots + t_nx_n$ is a convex combination of x_1, \ldots, x_n if $\sum_{i=1}^n t_i = 1$.

Lemma 1

A point x belongs to conv(X) if and only if there exits points $x_1, x_2, \ldots, x_n \in X$ such that x is a convex combination of x_1, x_2, \ldots, x_n . Sketch of proof (\leftarrow) :

- Each convex combination of points of X must lie in conv(X).
- For n = 2, it is true by definition.
- For large n, it can be proved by induction.

 (\rightarrow) : Trivial

Important properties for convex huls regarding the dimensions d: Caratheodory's theorem, Radon's lemma, and Helly's theorem.

Caratheodory's Theorem

Let $X \subseteq \mathbb{R}^d$. Then each point of $\operatorname{conv}(X)$ is a convex combination of at most d+1 points of X. Sketch of proof

• x is a convex combination of a finite number of points in X:

$$x = \sum_{i=1}^{k} t_i x_i,$$

where x_1, \ldots, x_k are points in X, t_1, \ldots, t_k are nonnegative real numbers, and $\sum_{i=1}^k t_i = 1$

- It is sufficient to discuss k > d + 1.
- We will continuously remove one point until k = d + 1.

• Consider k - 1 points/vectors $x_2 - x_1$, $x_3 - x_1$, $x_k - x_1$. Since they are linearly dependent, we have

$$\sum_{i=2}^k \lambda_i (x_i - x_1) = 0,$$

where $\lambda_2, \lambda_3, \ldots, \lambda_k$ are real numbers.

• Let λ_1 be $-\sum_{i=2}^k \lambda_i$. Then we have

$$\sum_{i=1}^{k} \lambda_i x_i = 0 \text{ and } \sum_{i=1}^{k} \lambda_i = 0.$$

Note that at least one λ_i is larger than zero.

• For any real number α , we have

$$x = \sum_{i=1}^{k} t_i x_i + \alpha \sum_{i=1}^{k} \lambda_i x_i = \sum_{i=1}^{k} (t_i - \alpha \lambda_i) x_i.$$

- Let α be $\min_{1 \le i \le k} \{ \frac{t_i}{\lambda_i} \mid \lambda_i > 0 \}$ and let j be the index such that $\frac{t_j}{\lambda_j} = \alpha$
- Then $t_i \alpha \lambda_i \ge 0$ for $1 \le i \le k$ and $t_j \alpha \lambda_j = 0$.
- we can remove x_j

Application of Caratheodory's Theorem

- In ℝ², conv(X) is the union of all triangles whose vertices are points in X.
- In ℝ³, conv(X) is the union of all tetrahedrons whose vertices are points in X.

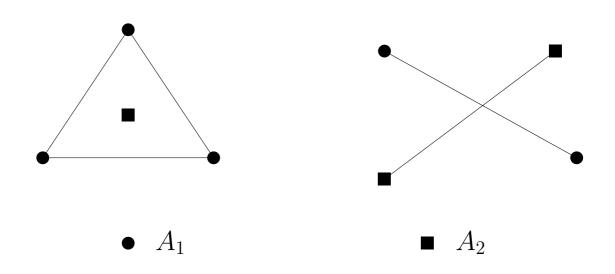
Radon's Lemma

Let A be a set of d + 2 points in \mathbb{R}^d . Then there exists two disjoints $A_1, A_2 \subset A$ such that

 $\operatorname{conv}(A_1) \cap \operatorname{conv}(A_2) \neq \emptyset.$

Definition

A point $x \in \operatorname{conv}(A_1) \cap \operatorname{conv}(A_2)$, where A_1 and A_2 are as in Radon's Lemma, is called a **Radon point** of A, and the pair (A_1, A_2) is called a **Radon partition** of A. (it is easily seen that we can require $A_1 \cup A_2 = A$.)



Sketch of Proof

- Let A be $\{a_1, a_2, \ldots, a_{d+2}\}$.
- These d + 2 points are necessarily affinely dependent. \rightarrow there exist real numbers $\alpha_1, \ldots, \alpha_{d+2}$, not all of which are 0, such that $\sum_{i=1}^{d+2} \alpha_i = 0$ and $\sum_{i=1}^{d+2} \alpha_i a_i = 0$.
- Let P be $\{i \mid \alpha_i > 0\}$ and N be $\{i \mid \alpha_i < 0\}$. It is clear that both P and N are nonempty.
- Let A_1 be $\{a_i \mid i \in P\}$ and A_2 be $\{a_i \mid i \in N\}$. We will exhibit a point x that is contained in both $conv(A_1)$ and $conv(A_2)$.
- Put S be $\sum_{i \in P} \alpha_i$; we also have $S = -\sum_{i \in N} \alpha_i$

• Then, define

$$x = \sum_{i \in P} \frac{\alpha_i}{S} a_i.$$

• Since $\sum_{i=1}^{d+2} \alpha_i a_i = 0 = \sum_{i \in P} \alpha_i a_i + \sum_{i \in N} \alpha_i a_i$, we have

$$x = \sum_{i \in N} \frac{-\alpha_i}{S} a_i.$$

- Since $\frac{\alpha_i}{S} \ge 0$ for $i \in P$ and $\sum_{i \in P} \frac{\alpha_i}{S} = 1$, x is a convex combination of points in $A_1, \to x \in \text{conv}(A_1)$.
- Since $\frac{-\alpha_i}{S} \ge 0$ for $i \in N$ and $\sum_{i \in N} \frac{-\alpha_i}{S} = 1$, x is a convex combination of points in $A_2, \to x \in \text{conv}(A_2)$.

Helly's theorem

Let C_1, C_2, \ldots, C_n be convex sets in $\mathbb{R}^d, n \ge d+1$.

If the intersection of every d + 1 of these sets is nonempty, the intersection of all the C_i is nonempty.

Example

In \mathbb{R}^2 , if every 3 among convex sets intersect, there is a point comon to all 100 sets.

Contrapositive viewpoint:

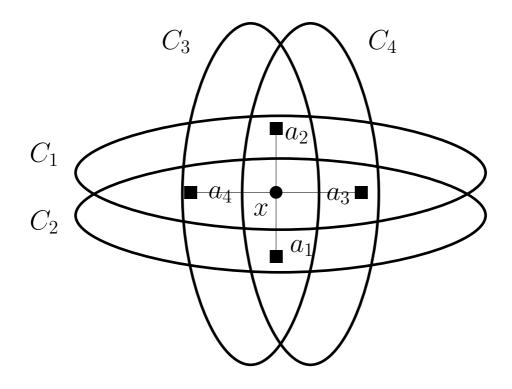
For $n \ge d+1$, if the intersection among C_1, C_2, \ldots, C_n is empty, there exist d+1 sets among them whose intersection is empty.

Implication

For many planar problems, one can deal with 3 convex sets instead of an arbitrary number.

Wrong Form:

If every d + 1 of convex sets intersect, all the *n* convex sets intersects. (Missing $n \ge d + 1$).



Sktech of Proof (Using Radon's Lemma)

- For a fixed d, we prove by induction on n.
- The case n = d + 1 is trivial.
- Suppose that $n \ge d+2$ and the statement holds for n-1.
- Consider sets C_1, C_2, \ldots, C_n satisfying the assumption.
- If we leave out any one of these sets, the remaining sets have a nonempty intersection by the inductive assumption.
- Fix a point $a_i \in \bigcap_{j \neq i} C_j$ for $1 \le i \le n$ and consider a_1, a_2, \ldots, a_n .
- By Radon's Lemma, there exists index sets $I_1, I_2 \subset \{1, 2, \dots, d+2\}$ such that

 $\operatorname{conv}(\{a_i \mid i \in I_1\}) \cap \operatorname{conv}(\{a_i \mid i \in I_2\}) \neq \emptyset.$

- We pick a point x in the intersection, and prove that x lies in the intersection of all the C_i , leading to the statement.
- Consider some $i \in \{1, 2, \dots, n\}$
- If $i \notin I_1$, each a_j with $j \in I_1$ lies in C_i , so $x \in \text{conv}(\{a_j \mid j \in I_1\}) \subseteq C_i$
- If $i \notin I_2$, each a_j with $j \in I_2$ lies in C_i , so $x \in \text{conv}(\{a_j \mid j \in I_2\}) \subseteq C_i$
- $x \in \bigcap_{i=1}^{n} C_i$.

An infinite version of Helly's theorem:

If we have infinite collection of convex sets in \mathbb{R}^d such that any d+1 of them have a common point, the entire collection still need not have a coomon points. There are two examples in \mathbb{R}^1 :

•
$$C_i = (0, 1/i)$$
 for $i = 1, 2, ...$

•
$$C_i = [i, \infty)$$
 for $i = 1, 2, ...$

The sets in the former are not closed, and those in the latter are unbounded.

Definition

A convex set is **compact** if it is closed and bounded

Infinite version of Helly's theorem

Let \mathcal{C} be an arbitrary infinite famility of compact convex sets in \mathbb{R}^d such that any d + 1 of the sets have a nonempty intersection. Then all the sets of \mathcal{C} have a nonempty intersection. Sketch of proof

- \bullet By Helly's theorem, any finite subfamily of ${\mathcal C}$ has a nonempty intersection
- By a basic property of compactness, if we have an arbtrary family of compact sets such that each of its finite subfamilies has a nonempty intersection, the entire famility has a nonempty intesection.

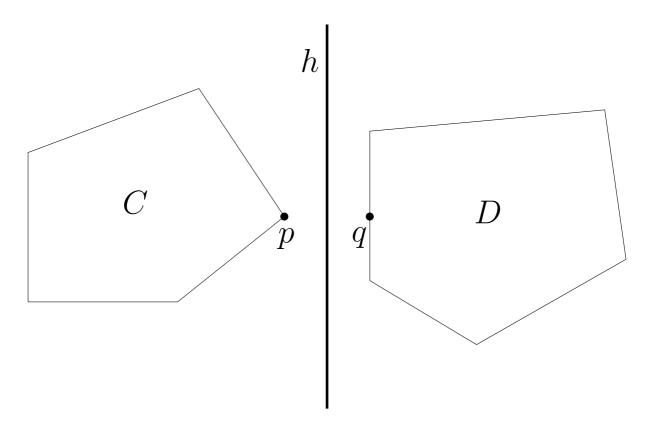
Separation Theorem

Let $C, D \subseteq \mathbb{R}^d$ be convex sets with $C \cap D = \emptyset$.

If C and D are closed and at least one of them is bounded, there exists a hyperplane h such that C and D are separated by h, i.e., there exists a unit vector $a \in \mathbb{R}^d$ and a real number $b \in \mathbb{R}$ such that for all $x \in C \langle a, x \rangle > b$, for all $x \in D \langle a, x \rangle < b$, and h is $\{x \in \mathbb{R}^d \mid \langle a, x \rangle = b\}$.

Sketch of proof

- \bullet Since one of C and D is bounded, the distance between C and D is well-defined.
- Find $p \in C$ and $q \in D$ such that $d(p,q) = \min_{p' \in C, q' \in D} d(p',q')$, i.e., d(p,q) is d(C,D).
- h can be taken as the one perphendicular to \overline{pq} and passing through the midpoint of \overline{pq} .



Corollary

If both of C and D are unbounded and one of them is open, there exists a hyperplane h such that C lies in one of the closed half-spaces determined by h and D lies in the opposite closed half-space.

Farkas Lemma (one of many versions)

For $d \times n$ real matrix A, exactly one of the following cases occurs:

- 1. The system of linear equations Ax = 0 has a nontrivial nonnegative solution $x \in \mathbb{R}^n$. (All components of x are nonnegative and at least one of them is strictly positive.)
- 2. There exists a $y \in \mathbb{R}^d$ such that $y^T A$ is a vector with all entries strictly negative. Thus, if we multiply the j^{th} equation in the system Ax = 0 by y_j and add these equations together, we obtain an equation that obviously has no nontrivial nonnegative solution, since all the coefficients on the left-hand sides are strictly negative, while the right-hand side is 0.

Sketech of proof

- This is another version of separation theorem.
- Let $V \subset \mathbb{R}^d$ be the set of n points given by the column vectors of the matrix A.
- There two cases: either $0 \in \operatorname{conv}(V)$ or $0 \notin \operatorname{conv}(V)$.
- In the former case, we know that 0 is a convex combination of the points of V, and the coefficients of this convex combination determine a nontrivial nonnegative solution to Ax = 0.
- In the latter case, there exists a hyperplane strictly seprating V from 0, i.e., a unit vector $y \in \mathbb{R}^d$ such that $\langle y, v \rangle < \langle y, 0 \rangle = 0$ for each $v \in V$. This is just the y from the scond alternative in the Farkas lemma.

Definition (Center point)

Let X be an *n*-point set in \mathbb{R}^d .

A point $x \in \mathbb{R}^d$ is called a centerpoint of X if each closed half-space containing x contains at least $\frac{n}{d+1}$ points of X.

- X may generally have many centerpoints.
- A centerpoint need not belong to X.

The notion of centerpoint is a generalization of the median of one-dimensional data.

- suppose $x_1, \ldots, x_n \in \mathbb{R}$ are results of measurements of an unknown real parameter x.
- We can use the arithmetic mean, but if one of the measurement is complete wrong, the estimate is bad
- A median is more robust. It is a point x' such that at least $\frac{n}{2}$ of the x_i lies in the interval $(-\infty, x]$ and tat least $\frac{n}{2}$ of them lies in $[x, \infty)$.

Definition (α -Center point)

Let X be an *n*-point set in \mathbb{R}^d .

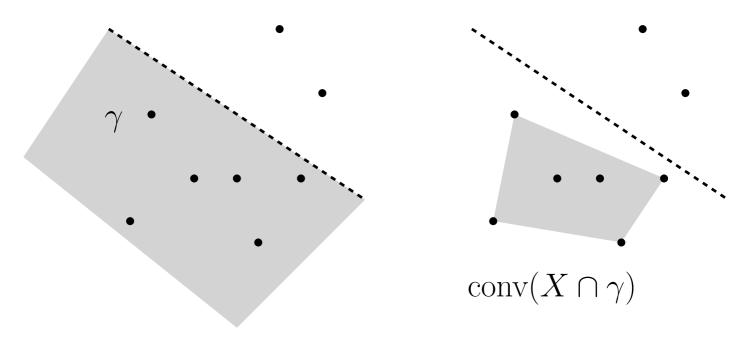
A point $x \in \mathbb{R}^d$ is called an α -centerpoint of X if each closed half-space containing x contains at least α points of X. If $\alpha > \frac{1}{d+1}$, such a an α centerpoint does not necessarily exist.

Cetnerpoint Theorem

Each finite point set in \mathbb{R}^d has at least one centerpoint.

Sketch of proof

- An equivalent definition of a centerpoint: x is a centerpoint of X if and only if x lies in each open half-space γ such that $|X \cap \gamma| > \frac{d}{d+1}n$
- \bullet We attempt to apply Helly's theorem to conclude that all these open half-spaces intersect, i.e., x in the intersection.
- But they are open and unbounded, i.e., not compact.



- Instead of such an open half-space γ , we consider the compact convex set $\operatorname{conv}(X \cap \gamma) \subset \gamma$
- By letting γ run through all open half-spaces γ with $|X \cap \gamma| > \frac{d}{d+1}n$, we obtain a family \mathcal{C} of compact convex sets.
- Each of those compact convex sets contains more than $\frac{d}{d+1}n$ points of X.
- The intersection of any d + 1 of them contains at least one point of X.
- The family \mathcal{C} consists of finitely many distinct sets since X has finitely many distinct subsets.
- By Helly's theorem, $\bigcap \mathcal{C} \neq \emptyset$.
- each point in $\bigcap \mathcal{C}$ is a centerpoint of X.