$k^{\text {th }}$-order Voronoi Diagrams

References:

- D.-T. Lee, "On k-nearest neighbor Voronoi Diagrams in the plane," IEEE Transactions on Computers, Vol. 31, No. 6, pp. 478-487, 1982.
- B. Chazelle and H. Edelsbrunner, "An improved algorithm for constructing kth-order Voronoi Diagram," IEEE Transactions on Computers, Vol. 36, No.11, pp. 1349-1454, 1987.
- C. Bohler, P. Cheilaris, R. Klein, C.-H. Liu, E. Papadopoulou, and M. Zavershynskyi, "On the complexity of higher order abstract Voronoi diagrams," Proceedings of the 40th International Colloquium on Automata, Languages and Programming (ICALP'13), pp. 208-219, 2013.

Given a set S of n point sites in the Euclidean plane, the $k^{\text {th_ }}$ order Voronoi diagram $\boldsymbol{V}_{\boldsymbol{k}}(\boldsymbol{S})$ is a planar subdivision such that

- each region is associated with a k-element subset H of S and denoted by $\mathrm{VR}_{k}(H, S)$.
- all points in $\mathrm{VR}_{k}(H, S)$ share the same k nearest sites H among S.
$V_{2}(S)$

Property 1

Consider a Voronoi edge e between $\mathrm{VR}_{k}\left(H_{1}, S\right)$ and $\mathrm{VR}_{k}\left(H_{2}, S\right)$.
H_{1} and H_{2} only differ by one site.
Let $H_{1} \backslash H_{2}$ be $\{p\}$ and $H_{2} \backslash H_{1}$ be $\{q\}$.
For all points $x \in e, H_{1} \cap H_{2}$ are the $k-1$ nearest sites of x and both p and q are the $k^{\text {th }}$ nearest sites of x.

$$
\begin{aligned}
& k=4 \\
& \left|H_{1} \cap H_{2}\right|=3
\end{aligned}
$$

General Position Assumption

- no more than than sites are on the same line
$\rightarrow V_{k}(S)$ is connected.
- no more than three sites are on the same circle
\rightarrow the degree of a Voronoi vertex is exactly 3.

Definition 1

Consider a Voronoi vertex v among $\mathrm{VR}_{k}\left(H_{1}, S\right), \mathrm{VR}_{k}\left(H_{2}, S\right)$, and $\mathrm{VR}_{k}\left(H_{3}, S\right)$.

- v is new if $\left|H_{1} \cup H_{2} \cup H_{3}\right|=k+2 . H_{1}=H \cup\{p\}, H_{2}=H \cup\{q\}$, $H_{3}=H \cup\{r\}$, where $|H|=k-1$.
\rightarrow the circle centered at v and touching p, q, and r will exactly enclose the $k-1$ sites of H.
- v is old if $\left|H_{1} \cup H_{2} \cup H_{3}\right|=k+1$. $H_{1}=H \cup\{p, q\}, H_{2}=H \cup\{q, r\}$, $H_{3}=H \cup\{p, r\}$, where $|H|=k-2$.
\rightarrow the circle centered at v and touching p, q, and r will exactly enclose the $k-2$ sites of H.

Example

v is old
$k=4$
$H_{1}=H \cup\{p, q\}$
$H_{2}=H \cup\{q, r\}$
$H_{3}=H \cup\{p, r\}$
$|H|=2$

Proprety 2

v is a Voronoi vertex among $\mathrm{VR}_{k}\left(H_{1}, S\right), \mathrm{VR}_{k}\left(H_{2}, S\right)$, and $\mathrm{VR}_{k}\left(H_{3}, S\right)$
(a) v is new
$\rightarrow v$ is an old Voronoi vertex among $\mathrm{VR}_{k}\left(H_{1} \cup H_{2}, S\right), \mathrm{VR}_{k}\left(H_{2} \cup\right.$ $\left.H_{3}, S\right), \mathrm{VR}_{k}\left(H_{3} \cup H_{1}, S\right)$.
(b) v is old
$\rightarrow v$ belongs to $\mathrm{VR}_{k}\left(H_{1} \cup H_{2} \cup H_{3}\right)$.

Property 3

Consider an edge e between $\mathrm{VR}_{k}\left(H_{1}, S\right)$ and $\mathrm{VR}_{k}\left(H_{2}, S\right)$.
Then all points $x \in e$ belong to $\operatorname{VR}_{k}\left(H_{1} \cup H_{2}\right)$.
Sketch of proof:
Let $H_{1} \backslash H_{2}$ be $\{p\}$ and $H_{2} \backslash H_{1}$ be $\{q\}$. Since e is a part of the bisector $B(p, q)$ between p and q, the circle centered at x and touching p and q will enclose all the $k-1$ sites of $H_{1} \cap H_{2}$. Therefore, $\left(H_{1} \cap H_{2}\right) \cup\{p, q\}=H_{1} \cup H_{2}$ are exactly the $k+1$ nearest sites of x.

Definition 2

For a Voronoi edge e of $V_{k}(S)$, if one endpoint of e is an old Voronoi vertex, e is called old; otherwise, e is called new.

Property 4

New vertices of $V_{k}(S)$ decompose $V_{k}(S)$ into two kinds of connected components:

1. a new Voronoi edge

2. a connected subgraph whose internal nodes are old Voronoi vertices

Each kind induces a Voronoi region of $V_{k+1}(S)$. (The former comes from Property 2 (a) and Property 3, and the latter comes from Property 2(b) and Property 3.)

Definition 3

For $i>1$, Voronoi regions $\mathrm{VR}_{i}(H, S)$ of $V_{i}(S)$ can be categorized into two types:

- type-1: $\mathrm{VR}_{i}(H, S)$ contains one new edge of $V_{i-1}(S)$.
- type-2: $\mathrm{VR}_{i}(H, S)$ contains old vertices of $V_{i-1}(S)$.

Example
Type-1

$V_{1}(S)$

$V_{2}(S)$
$\mathrm{VR}_{2}(\{q, s\}, S)$ is a type-1 region because it contains one new edge of $V_{1}(S)$

Type-2

Both $\mathrm{VR}_{3}(\{p, q, s\}, S)$ and $\mathrm{VR}_{3}(\{q, r, s\}, S)$ are type-2 regions because they contain old vertices of $V_{2}(S)$

Lemma 1

For $i>1, V_{i-1}(S) \cap \mathrm{VR}_{i}(H, S)$ is a tree. $V_{i-1}(S) \cap \mathrm{VR}_{i}(H, S)$ is $V_{i-1}(H) \cap$ $\mathrm{VR}_{i}(H, S)$
Sketch of proof

- all points in $\mathrm{VR}_{i}(H, S)$ share the same i nearest sites.
- $V_{i-1}(S)$ partitions $\mathrm{VR}_{i}(H, S)$ into at most t sub-regions, and $t<i$.
- For $1 \leq j \leq t$, let R_{j} be a sub-region of $V_{i-1}(S) \cap \operatorname{VR}_{i}(H, S)$, let H_{j} be the $(i-1)$-element subset of S such that $R_{j}=\mathrm{VR}_{i-1}\left(H_{j}, S\right) \cap \mathrm{VR}_{i}(H, S)$, and let $H \backslash H_{j}$ be $\left\{s_{j}\right\}$.
- For all points x in R_{j}, H_{j} are the $(i-1)$ nearest sites of x, and s_{j} is the $i^{\text {th }}$ nearest site of x.
- In other wods, s_{j} is the farthest site of x among H.
- $V_{i-1}(S)$ forms the fartheset site Voronoi diagram of H inside $\mathrm{VR}_{i}(H, S)$, i.e., $V_{i-1}(S) \cap \operatorname{VR}_{i}(H, S)=V_{i-1}(H) \cap \operatorname{VR}_{i}(H, S)$.
- The farthest-site Voronoi diagram is a tree
- By Property $4, V_{i-1}(S) \cap \mathrm{VR}_{i}(H, S)$ is a connected component, and thus $V_{i-1}(H) \cap \mathrm{VR}_{i}(H, S)$ is a tree.

Corollary 1

If $\mathrm{VR}_{i}(H, S)$ contains m old Voronoi vertices of $V_{i-1}(S), \mathrm{VR}_{i}(H, S)$ contains $2 m+1$ old Voronoi edges of $V_{i-1}(S)$.
Sketch of proof

- By the generation position assumption, the degree of a Voronoi vertex is 3 .
- By Lemma 1, $V_{i-1}(S) \cap \mathrm{VR}_{i}(H, S)$ is a tree.

Euler formular for a planar subdivision

$$
v-e+f=1+c,
$$

where v is \# of vertices, e is \# of edges, f is \# of faces, and c is \# of connected component

Corollary 2

Under the general position assumption,

- $E_{k}=3\left(N_{k}-1\right)-\mathcal{S}_{k}$
- and $I_{k}=2\left(N_{k}-1\right)-\mathcal{S}_{k}$,
where E_{k} is \# of edges, I_{k} is \# of vertices, N_{k} is \# of faces, and \mathcal{S}_{k} is \# of unbounded faces of $V_{k}(S)$.

Theorem 1

Given a set S of n point sites in the Euclidean plane, the total number N_{k} of regions in $V_{k}(S)$ is $2 k(n-k)+k^{2}-n+1-\sum_{i=1}^{k-1} \mathcal{S}_{i}$, where \mathcal{S}_{i} is \# of unbounded regions in $V_{i}(S)$, and \mathcal{S}_{0} is defined to be 0 .

proof

- I_{i}, I_{i}^{\prime} and $I_{i}^{\prime \prime}$ are $\#$ of vertices, new vertices, and old vertices of $V_{i}(S)$, respectively.
- E_{i}, E_{i}^{\prime} and $E_{i}^{\prime \prime}$ are \# of edges, new edges, and old edges of $V_{i}(S)$, respectively.
- N_{i}, N_{i}^{\prime} and $N_{i}^{\prime \prime}$ are $\#$ of regions, type-1 regions, and type-2 regions of $V_{i}(S)$, respectively.
- Since an old vertex of $V_{i+1}(S)$ is a new vertex of $V_{i}(S)$,

$$
\begin{aligned}
I_{i+1}= & I_{i+1}^{\prime}+I_{i+1}^{\prime \prime}=I_{i+1}^{\prime}+I_{i}^{\prime} \\
& \rightarrow I_{i+1}^{\prime}=I_{i+1}-I_{i}^{\prime}
\end{aligned}
$$

- $I_{1}=I_{1}^{\prime}, E_{1}=E_{1}^{\prime}$, and $E_{i+1}=E_{i+1}^{\prime}+E_{i+1}^{\prime \prime}$
- Order $N_{i+2}^{\prime \prime}$ type-2 regions of $V_{i+2}(S)$, let m_{j} be the number of old vertices of $V_{i+1}(S)$ inside the $j^{\text {th }}$ type- 2 region of $V_{i+2}(S)$, and let e_{j} be the number of edges of $V_{i+1}(S)$ inside the $j^{\text {th }}$ type-2 region of $V_{i+2}(S)$.
- $\sum_{j=1}^{N_{i+2}^{\prime \prime}} m_{j}=I_{i+1}^{\prime \prime}=I_{i}^{\prime}$ and $\sum_{j=1}^{N_{i+2}^{\prime \prime}} e_{j}=E_{i+1}^{\prime \prime}$
- By Corollay 1,

$$
E_{i+1}^{\prime \prime}=\sum_{j=1}^{N_{i+2}^{\prime \prime}} e_{j}=\sum_{j=1}^{N_{i+2}^{\prime \prime}}\left(2 m_{j}+1\right)=2 I_{i}^{\prime}+N_{i+2}^{\prime \prime} \rightarrow N_{i+2}^{\prime \prime}=E_{i+1}^{\prime \prime}-2 I_{i}^{\prime}
$$

$$
N_{i+2}=N_{i+2}^{\prime}+N_{i+2}^{\prime \prime}=E_{i+1}^{\prime}+\left(E_{i+1}^{\prime \prime}-2 I_{i}^{\prime}\right)=E_{i+1}-2 I_{i}^{\prime}
$$

- $N_{1}=n$ and $N_{2}=E_{1}^{\prime}=E_{1}=3(n-1)-\mathcal{S}_{1}$.
- since $N_{i+2}=E_{i+1}-2 I_{i}^{\prime}, E_{i}=3\left(N_{i}-1\right)-\mathcal{S}_{i}$, and $I_{i}=2\left(N_{i}-1\right)-\mathcal{S}_{i}$,

$$
\begin{gathered}
N_{k+2}=E_{k+1}-2 I_{k}^{\prime}=3\left(N_{k+1}-1\right)-\mathcal{S}_{k+1}-2 I_{k}^{\prime} \\
=3\left(N_{k+1}-1\right)-\mathcal{S}_{k+1}-2 \sum_{i=1}^{k}(-1)^{k-i} I_{i} \\
=3\left(N_{k+1}-1\right)-\mathcal{S}_{k+1}-2 \sum_{i=1}^{k}(-1)^{k-i}\left(2\left(N_{i}-1\right)-\mathcal{S}_{i}\right)
\end{gathered}
$$

- By induction on k,

$$
N_{k}=2 k(n-k)+k^{2}-n+1-\sum_{i=1}^{k-1} \mathcal{S}_{i}
$$

Theorem 2

$N_{k}=O(k(n-k))$

- If $k \leq n / 2$, by Theorem $1, N_{k}$ is trivially $O(k(n-k))$.
- If $k>n / 2, N_{k}$ depends on $\sum_{i=1}^{k-1} \mathcal{S}_{i}$
- Since $\sum_{i=1}^{n-1} \mathcal{S}_{i}=n(n-1), \sum_{i=1}^{k-1} \mathcal{S}_{i}=n(n-1)-\sum_{i=k}^{n-1} \mathcal{S}_{i}$
- Since $\mathcal{S}_{i}=\mathcal{S}_{n-i}, \sum_{i=k}^{n-1} \mathcal{S}_{i}=\sum_{i=1}^{n-k} \mathcal{S}_{i}$
- $N_{k}=2 k(n-k)+k^{2}-n+1-\sum_{i=1}^{k-1} \mathcal{S}_{i}$

$$
\begin{aligned}
& =2 k(n-k)+k^{2}-n+1-n(n-1)+\sum_{i=k}^{n-1} \mathcal{S}_{i} \\
& =N_{k}=2 k(n-k)+k^{2}-n+1-n(n-1)+\sum_{i=1}^{n-k} \mathcal{S}_{i}
\end{aligned}
$$

- Since $\sum_{i=1}^{n-k} \mathcal{S}_{i} \leq(n-k) n$ (recal \# of $\leq k$-set),

$$
N_{k} \leq 2 k(n-k)+k^{2}-n+1-n(n-1)+(n-k) n=k(n-k)+1
$$

Iterative Construction

Theorem 3

$V_{i+1}(S)$ can be obtained from $V_{i}(S)$ by taking $\operatorname{VR}_{i}(H, S) \cap V_{1}(S \backslash H)$ for all $H \subseteq S$ such that $V_{i}(H, S)$ is non-empty.

Sketch of proof

$$
\text { - } V_{1}(S \backslash H) \cap \operatorname{VR}_{i}(H, S)=V_{i+1}(S) \cap \operatorname{VR}_{i}(H, S)
$$

- all points in $\mathrm{VR}_{i}(H, S)$ share the same i nearest sites H among S
- all points in $\operatorname{VR}_{1}(p, S \backslash H)$ share the same nearest site p among $S \backslash H$.
- all points in $\mathrm{VR}_{1}(p, S \backslash H) \cap \mathrm{VR}_{i}(H, S)$ share the same i nearest sites H and $(i+1)^{\text {st }}$ nearest site p among S, implying that $\mathrm{VR}_{1}(p, S \backslash H) \cap$ $\mathrm{VR}_{i}(H, S) \subseteq \mathrm{VR}_{i+1}(H \cup\{p\}, S)$
- It is trivial that $\operatorname{VR}_{i+1}(H \cup\{p\}, S) \cap \operatorname{VR}_{i}(H, S) \subseteq \operatorname{VR}_{1}(p, S \backslash H)$,
$-\mathrm{VR}_{1}(p, S \backslash H) \cap \mathrm{VR}_{i}(H, S)=\mathrm{VR}_{i+1}(H \cup\{p\}, S) \cap \mathrm{VR}_{i}(H, S)$ for $\forall p \in H$

Corollary 3

Assume $\mathrm{VR}_{i}(H, S)$ has m adjacent regions $\mathrm{VR}_{i}\left(H_{j}, S\right), 1 \leq j \leq m$. Let Q be $\bigcup_{1 \leq j \leq m} H_{j} \backslash H$. Then $V_{i+1}(S) \cap \mathrm{VR}_{i}(H, S)=V_{1}(Q) \cap \operatorname{VR}_{i}(H, S)$
The proof will be an exercise.

Compute $V_{i+1}(S)$ from $V_{i}(S)$

- For each nonempty region $\mathrm{VR}_{i}(H, S)$, compute $V_{1}(Q) \cap \mathrm{VR}_{i}(H, S)$ where $\mathrm{VR}_{i}(H, S)$ has m adjacent regions $\operatorname{VR}_{i}\left(H_{j}, S\right), 1 \leq j \leq m$, and Q is $\bigcup_{1 \leq j \leq m} H_{j} \backslash H$.

Lemma 2

$V_{i+1}(S)$ can be obtained from $V_{i}(S)$ in $O(i(n-i) \log n)$ time. Sketch of proof

- $V_{1}(Q)$ can be computed in $|Q| \log |Q|$ time.
- $|Q| \leq\left|\partial \mathrm{VR}_{i}(H, S)\right|$ where $\partial \mathrm{VR}_{i}(H, S)$ is the boundary of $\operatorname{VR}_{i}(H, S)$

$$
\begin{gathered}
\sum_{H \subset S,|H|=i, \mathrm{VR}_{i}(H, S) \neq \emptyset} O\left(\left|\partial \mathrm{VR}_{i}(H, S)\right| \log \left|\partial \mathrm{VR}_{i}(H, S)\right|\right) \\
=\log n \sum_{H \subset S,|H|=i, \mathrm{VR}_{i}(H, S) \neq \emptyset} O\left(\left|\partial \mathrm{VR}_{i}(H, S)\right|\right) \\
=O(i(n-i) \log n)
\end{gathered}
$$

Theorem 4

$V_{k}(S)$ can be computed in $O\left(k^{2} n \log n\right)$ time.
Sketch of proof

- $V_{1}(S)$ can be computed in $O(n \log n)$
- $O(n \log n)+\sum_{i=1}^{k-1} O(i(n-i) \log i)=O\left(k^{2} n \log n\right)$.

Construction by Geometric Duality and Arrangement

Definition 4 (Bisectors)

- For two sites, $p, q \in S$, the bisector $B(p, q)$ is $\left\{x \in \mathrm{R}^{2} \mid d(x, p)=d(x, q)\right\}$.
- For a site $p \in S$, let B_{p} be $\{B(p, q) \mid q \in S \backslash\{p\}\}$.

Definition 5

For a site $p \in S$, the k-neighborhood of p is $\bigcup_{p \in H, H \subset S,|H|=k} \mathrm{VR}_{k}(H, S)$ and denoted by $\mathrm{VN}_{k}(p, S) . \mathrm{VN}_{k}(p, S)$.

Property 5

$$
V_{k}(S)=\bigcup_{p \in S} \partial \operatorname{VN}_{k}(p, S)
$$

Lemma 3

$\mathrm{VN}_{k}(p, S)$ is connected and each edge of $\partial \mathrm{VN}_{k}(p, S)$ is a part of the bisector $B(p, q)$ for some $q \in S \backslash\{p\}$.
The proof could be a bonus task.

Lemma 4

Consider an edge of $\partial \mathrm{VN}_{k}(p, S)$. For any point $x \in e, \overline{p x}$ intersects exactly $k-1$ bisectors of B_{p}.
Sketch of proof

- W.l.o.g, let e belong to $\mathrm{VR}_{k}\left(H_{1}, S\right) \cap \mathrm{VR}_{k}\left(H_{2}, S\right)$ and let p belong to $H_{1} \backslash H_{2}$.
- It is clear that $H_{1} \backslash\{p\}$ are the $k-1$ nearest sites of x.
- For any $q \in H_{1} \backslash\{p\}, x$ belongs to $D(q, p)$, i.e., $\overline{p x}$ intersects $B(p, q)$. For any $q \in S \backslash H_{1}, x$ does not belongs to $D(q, p)$, i.e., $\overline{p x}$ does not intersects $B(p, q)$.

Definition 6

- Given a set L of lines in the plane, let $A(L)$ be the arrangement fromd by L.
- For a point x in a face of $A(L)$, an edge e of $A(L)$ is at level i from x if for any point $y \in e, \overline{y x}$ intersects exactly $i-1$ lines of L.
- The i-skeleton $\operatorname{SK}_{i}(x, L)$ is the collection of edges in $A(L)$ whose level from x is i.

Lemma 5

$$
\partial \mathrm{VN}_{k}(p, S)=\operatorname{SK}_{k}\left(p, B_{p}\right)
$$

Therefore, computing $V_{k}(S)$ is equivalent to computing $\operatorname{SK}_{k}\left(p, B_{p}\right)$ for all sites $p \in S$.
Hereafter, we translate S such that p is located at $(0,0)$, and let L be B_{p}. If we know all the vertices of $\operatorname{SK}_{k}(p, L)$ and their order along $\operatorname{SK}_{k}(p, L)$ (clockwise or counterclockwise, we can compute $\mathrm{SK}_{k}(p, L)$

Lemma 6 Under the general position assumption, for a vertex v of $\mathrm{SK}_{k}\left(p, B_{p}\right), \overline{p v}$ intersects $k-1$ or $k-2$ lines of B_{p}.

Geometric Duality

Consider a function Ψ. For a point $x=(a, b)$ except the origin, $\Psi(x)$ is a line $: a x_{1}+b x_{2}=1$, and for a line $l: a x_{1}+b x_{2}=1, \Psi(x)$ is a point (a, b).

Lemma 7

- For an edge e of $\operatorname{SK}_{k}\left(p, B_{p}\right)$ and any point $x \in e, \Psi(x)$ partitions the plane such that one half-plane contains the origin and exactly $k-1$ points of $\Psi\left(B_{p}\right)$.
- For a vertex v of $\operatorname{SK}_{k}\left(p, B_{p}\right), \Psi(v)$ partitions the plane such that one halfplane contains the origin and $k-1$ or $k-2$ points of $\Psi\left(B_{p}\right)$.

Example

For $q \in S \backslash\{p\}$, let p_{q} be $\Psi(B(p, q))$. Consider $n=8$ and $k=4$.

p_{u}

p_{t}

$l_{q, s}$ corresponds to an old Voronoi vertex among $\mathrm{VR}_{k}\left(H_{1}^{\prime}, S\right), \mathrm{VR}_{k}\left(H_{2}^{\prime}, S\right)$, and $\mathrm{VR}_{k}\left(H_{3}^{\prime}, S\right)$, where $H_{1}^{\prime}=H^{\prime} \cup$ $\{p, s\}, H_{2}^{\prime}=H^{\prime} \cup\{q, s\}, H_{3}^{\prime}=$ $H \cup\{p, q\}$, and $H^{\prime}=\{t, u\}$. (Note $H_{1}^{\prime}=H_{1}$ and $H_{2}^{\prime}=H_{2}$.)

Let v_{1}, v_{2}, \ldots be a sequence of vertices of $\operatorname{SK}_{k}\left(p, B_{p}\right)$ along the counterclockwise order.
We consider how to compute v_{i+1} from v_{i}.

- W.l.o.g., we let v_{i} be the intersection between $B(p, q)$ and $B(p, r)$ and v_{i+1} be $B(p, q)$ and $B(p, s)$. But we do not know s.
- Similarly, for each $q \in S \backslash\{p\}$, let p_{q} be $\Psi(B(q, p))$.
- $\Psi\left(v_{i}\right)$ is a straight line passing through p_{q} and p_{r}.
- Let l be $\Psi\left(v_{i}\right)$, and rotate l at p_{q} in the direction such that one half-plane contains the origin and exactly $k-1$ points of $\Psi\left(B_{p}\right)$.
- The rotation will hit p_{s} first and we obtain v_{i+1}.
- During the rotation, l partition $\left.\Psi\left(B_{p} \backslash\{B(p, q)\}\right)\right)$ into the same 2 sets.

Property 6

Let e be an edge of $\operatorname{SK}_{k}(p, S)$ and belong to $B(p, q)$. Let v be an endpoint of e and v be an intersection between $B(p, q)$ and $B(p, s)$. For any point $x \in e$, let \mathcal{P}_{1} and \mathcal{P}_{2} be the 2-partition of $\Psi\left(B_{p} \backslash\{B(p, q)\}\right)$ formed by $\Psi(x)$. Then, $\Psi(B(p, s))$ must be one of four tangent points between $\Psi(B(p, q))$ and the two convex hulls of \mathcal{P}_{1} and \mathcal{P}_{2}.

Lemma 8

$\mathrm{SK}_{k}\left(p, B_{p}\right)$ can be constructed in $O\left(n \log n+\left|S K_{k}\left(p, B_{p}\right)\right| \log n\right)$ time. Sketch of proof

- After the sorting, it takes $O(n)$ time to compute a vertex of $\operatorname{SK}_{k}\left(p, B_{p}\right)$ and then view the vertex as the begining vertex v_{1}.
- It sufficient to analyze the time for computing v_{i+1} from v_{i}.
- Assume that v_{i} is an intersection between $B(p, q)$ and $B(p, r)$.
- Let \mathcal{P}_{1} and \mathcal{P}_{2} be the 2-partion of $\Psi\left(B_{p} \backslash\{p\}\right)$ formed by $\Psi\left(v_{i}\right)$ and let \mathcal{P}_{1} belong to the half-plane containing the origin.
- If v_{i} is a new Voronoi vertex, $\left|\mathcal{P}_{1}\right|=k-1$.
- let l be $\Psi\left(v_{i}\right)$
- rotate l at $\Psi(B(p, q))$ such that \mathcal{P}_{1} and $\Psi(B(p, r))$ belongs to different half-planes formed by l.
- Determine that l first touches the convex hull of \mathcal{P}_{1} or that of $\mathcal{P}_{2} \cup$ $\{\Psi(B(p, r))\}$
- Let $\Psi(B(p, s))$ be the first touched point of the first touched convex hull. Then v_{i+1} is the intersection between $B(p, q)$ and $B(p, s)$.
- Otherwise, v_{i} is an old Voronoi vertex, and $\left|\mathcal{P}_{1}\right|=k-2$.
- let l be $\Psi\left(v_{i}\right)$
- rotate l at $\Psi(B(p, q))$ such that \mathcal{P}_{1} and $\Psi(B(p, r))$ belong to the same half-plane formed by l.
- Determine that l first touches the convex hull of $\mathcal{P}_{1} \cup\{\Psi(B(p, r))\}$ or that of \mathcal{P}_{2}
- Let $\Psi(B(p, s))$ be the first touched point of the first touched convex hull. Then v_{i+1} is the intersection between $B(p, q)$ and $B(p, s)$.
- Brodal and Jacob proposed a dynamic structure for the convex hulls allowing insertion, deletion, and tangent query in amorted $O(\log n)$ time.
- It takes $O(n \log n)$ time to compute the two initial convex hulls.
- There are $O\left(\mid S K_{k}\left(p, B_{p}\right)\right) \mid$ insertions, deletions, and tangent queries.

Theorem 5

$V_{k}(S)$ can be computed in $O\left(n^{2} \log n+k(n-k) \log n\right)$ time. sketch of proof

- $V_{k}(S)=\bigcup_{p \in S} S K_{k}\left(p, B_{p}\right)$.
- $\sum_{p \in S} O\left(n \log n+\left|S K_{k}\left(p, B_{p}\right)\right| \log n\right)=O\left(n^{2} \log n+k(n-k) \log n\right)$

