k^{th} -order Voronoi Diagrams

References:

- D.-T. Lee, "On k-nearest neighbor Voronoi Diagrams in the plane," *IEEE Transactions on Computers*, Vol. 31, No. 6, pp. 478–487, 1982.
- B. Chazelle and H. Edelsbrunner, "An improved algorithm for constructing kth-order Voronoi Diagram," *IEEE Transactions on Computers*, Vol. 36, No.11, pp. 1349–1454, 1987.
- C. Bohler, P. Cheilaris, R. Klein, C.-H. Liu, E. Papadopoulou, and M. Zavershynskyi, "On the complexity of higher order abstract Voronoi diagrams," Proceedings of the 40th International Colloquium on Automata, Languages and Programming (ICALP'13), pp. 208–219, 2013.

Given a set S of n point sites in the Euclidean plane, the k^{th} order Voronoi diagram $V_k(S)$ is a planar subdivision such that

- each region is associated with a k-element subset H of S and denoted by $\operatorname{VR}_k(H, S)$.
- all points in $VR_k(H, S)$ share the same k nearest sites H among S.

Property 1

Consider a Voronoi edge e between $\operatorname{VR}_k(H_1, S)$ and $\operatorname{VR}_k(H_2, S)$. H_1 and H_2 only differ by one site. Let $H_1 \setminus H_2$ be $\{p\}$ and $H_2 \setminus H_1$ be $\{q\}$. For all points $x \in e, H_1 \cap H_2$ are the k-1 nearest sites of x and both p and q are the k^{th} nearest sites of x.

General Position Assumption

- no more than than sites are on the same line $\rightarrow V_k(S)$ is connected.
- no more than three sites are on the same circle
 → the degree of a Voronoi vertex is exactly 3.

Definition 1

Consider a Voronoi vertex v among $\operatorname{VR}_k(H_1, S)$, $\operatorname{VR}_k(H_2, S)$, and $\operatorname{VR}_k(H_3, S)$.

- v is **new** if $|H_1 \cup H_2 \cup H_3| = k + 2$. $H_1 = H \cup \{p\}, H_2 = H \cup \{q\}, H_3 = H \cup \{r\}$, where |H| = k 1. \rightarrow the circle centered at v and touching p, q, and r will exactly enclose the k - 1 sites of H.
- v is old if $|H_1 \cup H_2 \cup H_3| = k+1$. $H_1 = H \cup \{p, q\}$, $H_2 = H \cup \{q, r\}$, $H_3 = H \cup \{p, r\}$, where |H| = k-2. \rightarrow the circle centered at v and touching p, q, and r will exactly enclose the k-2 sites of H.

Example

Proprety 2

v is a Voronoi vertex among $\operatorname{VR}_k(H_1, S)$, $\operatorname{VR}_k(H_2, S)$, and $\operatorname{VR}_k(H_3, S)$

(a) v is **new**

 $\rightarrow v$ is an **old** Voronoi vertex among $\operatorname{VR}_k(H_1 \cup H_2, S)$, $\operatorname{VR}_k(H_2 \cup H_3, S)$, $\operatorname{VR}_k(H_3 \cup H_1, S)$.

(b) v is **old**

 $\rightarrow v$ belongs to $\operatorname{VR}_k(H_1 \cup H_2 \cup H_3)$.

Property 3

Consider an edge e between $\operatorname{VR}_k(H_1, S)$ and $\operatorname{VR}_k(H_2, S)$. Then all points $x \in e$ belong to $\operatorname{VR}_k(H_1 \cup H_2)$. Sketch of proof: Let $H_1 \setminus H_2$ be $\{p\}$ and $H_2 \setminus H_1$ be $\{q\}$. Since e is a part of the bisector B(p,q) between p and q, the circle centered at x and touching p and q will enclose all the k-1 sites of $H_1 \cap H_2$. Therefore, $(H_1 \cap H_2) \sqcup \{p, q\} = H_1 \sqcup H_2$

enclose all the k-1 sites of $H_1 \cap H_2$. Therefore, $(H_1 \cap H_2) \cup \{p,q\} = H_1 \cup H_2$ are exactly the k+1 nearest sites of x.

Definition 2

For a Voronoi edge e of $V_k(S)$, if one endpoint of e is an old Voronoi vertex, e is called **old**; otherwise, e is called **new**.

Property 4

New vertices of $V_k(S)$ decompose $V_k(S)$ into two kinds of connected components:

- 1. a new Voronoi edge
- 2. a connected subgraph whose internal nodes are old Voronoi vertices

Each kind induces a Voronoi region of $V_{k+1}(S)$. (The former comes from Property 2 (a) and Property 3, and the latter comes from Property 2(b) and Property 3.)

Definition 3

For i > 1, Voronoi regions $VR_i(H, S)$ of $V_i(S)$ can be categorized into two types:

- **type-1**: $\operatorname{VR}_i(H, S)$ contains one new edge of $V_{i-1}(S)$.
- **type-2**: $\operatorname{VR}_i(H, S)$ contains old vertices of $V_{i-1}(S)$.

Example

Type-1

 $\operatorname{VR}_2(\{q,s\},S)$ is a type-1 region because it contains one new edge of $V_1(S)$

Both $VR_3(\{p, q, s\}, S)$ and $VR_3(\{q, r, s\}, S)$ are type-2 regions because they contain old vertices of $V_2(S)$

Lemma 1

For i > 1, $V_{i-1}(S) \cap \operatorname{VR}_i(H, S)$ is a tree. $V_{i-1}(S) \cap \operatorname{VR}_i(H, S)$ is $V_{i-1}(H) \cap \operatorname{VR}_i(H, S)$ $\operatorname{VR}_i(H, S)$ Sketch of proof

- all points in $VR_i(H, S)$ share the same *i* nearest sites.
- $V_{i-1}(S)$ partitions $VR_i(H, S)$ into at most t sub-regions, and t < i.
- For $1 \leq j \leq t$, let R_j be a sub-region of $V_{i-1}(S) \cap \operatorname{VR}_i(H, S)$, let H_j be the (i-1)-element subset of S such that $R_j = \operatorname{VR}_{i-1}(H_j, S) \cap \operatorname{VR}_i(H, S)$, and let $H \setminus H_j$ be $\{s_j\}$.
- For all points x in R_j , H_j are the (i-1) nearest sites of x, and s_j is the i^{th} nearest site of x.
- In other wods, s_j is the farthest site of x among H.
- $V_{i-1}(S)$ forms the fartheset site Voronoi diagram of H inside $\operatorname{VR}_i(H, S)$, i.e., $V_{i-1}(S) \cap \operatorname{VR}_i(H, S) = V_{i-1}(H) \cap \operatorname{VR}_i(H, S)$.
- The farthest-site Voronoi diagram is a tree
- By Property 4, $V_{i-1}(S) \cap \operatorname{VR}_i(H, S)$ is a connected component, and thus $V_{i-1}(H) \cap \operatorname{VR}_i(H, S)$ is a tree.

Corollary 1

If $\operatorname{VR}_i(H, S)$ contains m old Voronoi vertices of $V_{i-1}(S)$, $\operatorname{VR}_i(H, S)$ contains 2m + 1 old Voronoi edges of $V_{i-1}(S)$. Sketch of proof

- By the generation position assumption, the degree of a Voronoi vertex is 3.
- By Lemma 1, $V_{i-1}(S) \cap \operatorname{VR}_i(H, S)$ is a tree.

Euler formular for a planar subdivision

$$v - e + f = 1 + c,$$

where v is # of vertices, e is # of edges, f is # of faces, and c is # of connected component

Corollary 2

Under the general position assumption,

- $E_k = 3(N_k 1) \mathcal{S}_k$
- and $I_k = 2(N_k 1) \mathcal{S}_k$,

where E_k is # of edges, I_k is # of vertices, N_k is # of faces, and S_k is # of unbounded faces of $V_k(S)$.

Theorem 1

Given a set S of n point sites in the Euclidean plane, the total number N_k of regions in $V_k(S)$ is $2k(n-k) + k^2 - n + 1 - \sum_{i=1}^{k-1} S_i$, where S_i is # of unbounded regions in $V_i(S)$, and S_0 is defined to be 0.

proof

- I_i , I'_i and I''_i are # of vertices, new vertices, and old vertices of $V_i(S)$, respectively.
- E_i, E'_i and E''_i are # of edges, new edges, and old edges of $V_i(S)$, respectively.
- N_i , N'_i and N''_i are # of regions, type-1 regions, and type-2 regions of $V_i(S)$, respectively.
- Since an old vertex of $V_{i+1}(S)$ is a new vertex of $V_i(S)$,

$$I_{i+1} = I'_{i+1} + I''_{i+1} = I'_{i+1} + I'_i$$
$$\to I'_{i+1} = I_{i+1} - I'_i$$

- $I_1 = I'_1, E_1 = E'_1$, and $E_{i+1} = E'_{i+1} + E''_{i+1}$
- Order N''_{i+2} type-2 regions of $V_{i+2}(S)$, let m_j be the number of old vertices of $V_{i+1}(S)$ inside the j^{th} type-2 region of $V_{i+2}(S)$, and let e_j be the number of edges of $V_{i+1}(S)$ inside the j^{th} type-2 region of $V_{i+2}(S)$.
- $\sum_{j=1}^{N''_{i+2}} m_j = I''_{i+1} = I'_i$ and $\sum_{j=1}^{N''_{i+2}} e_j = E''_{i+1}$
- By Corollay 1,

$$E_{i+1}'' = \sum_{j=1}^{N_{i+2}''} e_j = \sum_{j=1}^{N_{i+2}''} (2m_j + 1) = 2I_i' + N_{i+2}'' \to N_{i+2}'' = E_{i+1}'' - 2I_i'$$

$$N_{i+2} = N'_{i+2} + N''_{i+2} = E'_{i+1} + (E''_{i+1} - 2I'_i) = E_{i+1} - 2I'_i$$

• $N_1 = n$ and $N_2 = E'_1 = E_1 = 3(n-1) - S_1$.
• since $N_{i+2} = E_{i+1} - 2I'_i$, $E_i = 3(N_i - 1) - S_i$, and $I_i = 2(N_i - 1) - S_i$,
 $N_{k+2} = E_{k+1} - 2I'_k = 3(N_{k+1} - 1) - S_{k+1} - 2I'_k$
 $= 3(N_{k+1} - 1) - S_{k+1} - 2\sum_{i=1}^k (-1)^{k-i} I_i$
 $= 3(N_{k+1} - 1) - S_{k+1} - 2\sum_{i=1}^k (-1)^{k-i} (2(N_i - 1) - S_i)$

• By induction on k,

$$N_k = 2k(n-k) + k^2 - n + 1 - \sum_{i=1}^{k-1} S_i$$

Theorem 2

 $N_k = O(k(n-k))$

- If $k \le n/2$, by Theorem 1, N_k is trivially O(k(n-k)).
- If k > n/2, N_k depends on $\sum_{i=1}^{k-1} S_i$

• Since
$$\sum_{i=1}^{n-1} S_i = n(n-1), \sum_{i=1}^{k-1} S_i = n(n-1) - \sum_{i=k}^{n-1} S_i$$

• Since
$$S_i = S_{n-i}, \sum_{i=k}^{n-1} S_i = \sum_{i=1}^{n-k} S_i$$

- $N_k = 2k(n-k) + k^2 n + 1 \sum_{i=1}^{k-1} S_i$ = $2k(n-k) + k^2 - n + 1 - n(n-1) + \sum_{i=k}^{n-1} S_i$ = $N_k = 2k(n-k) + k^2 - n + 1 - n(n-1) + \sum_{i=1}^{n-k} S_i$
- Since $\sum_{i=1}^{n-k} S_i \le (n-k)n$ (recal # of $\le k$ -set), $N_k \le 2k(n-k) + k^2 - n + 1 - n(n-1) + (n-k)n = k(n-k) + 1$

Theorem 3

 $V_{i+1}(S)$ can be obtained from $V_i(S)$ by taking $\operatorname{VR}_i(H, S) \cap V_1(S \setminus H)$ for all $H \subseteq S$ such that $V_i(H, S)$ is non-empty.

Sketch of proof

• $V_1(S \setminus H) \cap \operatorname{VR}_i(H, S) = V_{i+1}(S) \cap \operatorname{VR}_i(H, S)$

- all points in $VR_i(H, S)$ share the same *i* nearest sites *H* among *S*
- all points in $\operatorname{VR}_1(p, S \setminus H)$ share the same nearest site p among $S \setminus H$.
- all points in $\operatorname{VR}_1(p, S \setminus H) \cap \operatorname{VR}_i(H, S)$ share the same *i* nearest sites H and $(i+1)^{\mathrm{st}}$ nearest site *p* among *S*, implying that $\operatorname{VR}_1(p, S \setminus H) \cap$ $\operatorname{VR}_i(H, S) \subseteq \operatorname{VR}_{i+1}(H \cup \{p\}, S)$
- It is trivial that $\operatorname{VR}_{i+1}(H \cup \{p\}, S) \cap \operatorname{VR}_i(H, S) \subseteq \operatorname{VR}_1(p, S \setminus H)$,
- $-\operatorname{VR}_1(p,S\setminus H)\cap\operatorname{VR}_i(H,S)=\operatorname{VR}_{i+1}(H\cup\{p\},S)\cap\operatorname{VR}_i(H,S)$ for $\forall p\in H$

Corollary 3

Assume $\operatorname{VR}_i(H, S)$ has m adjacent regions $\operatorname{VR}_i(H_j, S)$, $1 \leq j \leq m$. Let Q be $\bigcup_{1 \leq j \leq m} H_j \setminus H$. Then $V_{i+1}(S) \cap \operatorname{VR}_i(H, S) = V_1(Q) \cap \operatorname{VR}_i(H, S)$ The proof will be an exercise.

Compute $V_{i+1}(S)$ from $V_i(S)$

• For each nonempty region $\operatorname{VR}_i(H, S)$, compute $V_1(Q) \cap \operatorname{VR}_i(H, S)$ where $\operatorname{VR}_i(H, S)$ has m adjacent regions $\operatorname{VR}_i(H_j, S)$, $1 \leq j \leq m$, and Q is $\bigcup_{1 \leq j \leq m} H_j \setminus H$.

Lemma 2

 $V_{i+1}(S)$ can be obtained from $V_i(S)$ in $O(i(n-i)\log n)$ time. Sketch of proof

- $V_1(Q)$ can be computed in $|Q| \log |Q|$ time.
- $|Q| \leq |\partial \operatorname{VR}_i(H, S)|$ where $\partial \operatorname{VR}_i(H, S)$ is the boundary of $\operatorname{VR}_i(H, S)$

$$\sum_{\substack{H \subset S, |H| = i, \text{VR}_i(H,S) \neq \emptyset}} O(|\partial \text{VR}_i(H,S)| \log |\partial \text{VR}_i(H,S)|)$$
$$= \log n \sum_{\substack{H \subset S, |H| = i, \text{VR}_i(H,S) \neq \emptyset}} O(|\partial \text{VR}_i(H,S)|)$$
$$= O(i(n-i)\log n)$$

Theorem 4

 $V_k(S)$ can be computed in $O(k^2n\log n)$ time. Sketch of proof

- $V_1(S)$ can be computed in $O(n \log n)$
- $O(n \log n) + \sum_{i=1}^{k-1} O(i(n-i) \log i) = O(k^2 n \log n).$

Construction by Geometric Duality and Arrangement

Definition 4 (Bisectors)

- For two sites, $p, q \in S$, the bisector B(p,q) is $\{x \in \mathbb{R}^2 \mid d(x,p) = d(x,q)\}$.
- For a site $p \in S$, let B_p be $\{B(p,q) \mid q \in S \setminus \{p\}\}$.

Definition 5

For a site $p \in S$, the k-neighborhood of p is $\bigcup_{p \in H, H \subset S, |H|=k} \operatorname{VR}_k(H, S)$ and denoted by $\operatorname{VN}_k(p, S)$. $\operatorname{VN}_k(p, S)$.

Property 5

$$V_k(S) = \bigcup_{p \in S} \partial \mathrm{VN}_k(p, S)$$

Lemma 3

 $VN_k(p, S)$ is connected and each edge of $\partial VN_k(p, S)$ is a part of the bisector B(p,q) for some $q \in S \setminus \{p\}$. The proof could be a bonus task.

Lemma 4

Consider an edge of $\partial \text{VN}_k(p, S)$. For any point $x \in e, \overline{px}$ intersects exactly k-1 bisectors of B_p .

Sketch of proof

- W.l.o.g, let e belong to $\operatorname{VR}_k(H_1, S) \cap \operatorname{VR}_k(H_2, S)$ and let p belong to $H_1 \setminus H_2$.
- It is clear that $H_1 \setminus \{p\}$ are the k-1 nearest sites of x.
- For any $q \in H_1 \setminus \{p\}$, x belongs to D(q, p), i.e., \overline{px} intersects B(p, q). For any $q \in S \setminus H_1$, x does not belongs to D(q, p), i.e., \overline{px} does not intersects B(p, q).

Definition 6

- Given a set L of lines in the plane, let A(L) be the arrangement fromd by L.
- For a point x in a face of A(L), an edge e of A(L) is at level i from x if for any point $y \in e$, \overline{yx} intersects exactly i - 1 lines of L.
- The *i*-skeleton $SK_i(x, L)$ is the collection of edges in A(L) whose level from x is *i*.

Lemma 5

$$\partial \mathrm{VN}_k(p, S) = \mathrm{SK}_k(p, B_p)$$

Therefore, computing $V_k(S)$ is equivalent to computing $SK_k(p, B_p)$ for all sites $p \in S$.

Hereafter, we translate S such that p is located at (0,0), and let L be B_p . If we know all the vertices of $SK_k(p, L)$ and their order along $SK_k(p, L)$ (clockwise or counterclockwise, we can compute $SK_k(p, L)$

Lemma 6 Under the general position assumption, for a vertex v of $SK_k(p, B_p)$, \overline{pv} intersects k - 1 or k - 2 lines of B_p .

Geometric Duality

Consider a function Ψ . For a point x = (a, b) except the origin, $\Psi(x)$ is a line : $ax_1 + bx_2 = 1$, and for a line $l : ax_1 + bx_2 = 1$, $\Psi(x)$ is a point (a, b).

Lemma 7

- For an edge e of $SK_k(p, B_p)$ and any point $x \in e, \Psi(x)$ partitions the plane such that one half-plane contains the origin and exactly k - 1 points of $\Psi(B_p)$.
- For a vertex v of $SK_k(p, B_p)$, $\Psi(v)$ partitions the plane such that one halfplane contains the origin and k-1 or k-2 points of $\Psi(B_p)$.

Example

For $q \in S \setminus \{p\}$, let p_q be $\Psi(B(p,q))$. Consider n = 8 and k = 4.

 $l_{q,r}$ corresponds to a new Voronoi vertex among $\operatorname{VR}_k(H_1, S)$, $\operatorname{VR}_k(H_2, S)$, and $\operatorname{VR}_k(H_3, S)$, where $H_1 = H \cup$ $\{p\}, H_2 = H \cup \{q\}, H_3 = H \cup \{r\},$ and $H = \{s, t, u\}.$

l corresponds to a point on a Voronoi edge between $\operatorname{VR}_k(H_1, S)$ and $\operatorname{VR}_k(H_2, S)$, where $H_1 = H \cup \{p\}$, $H_2 = H \cup \{q\}$, and $H = \{s, t, u\}$.

 $l_{q,s}$ corresponds to an old Voronoi vertex among $\operatorname{VR}_k(H'_1, S)$, $\operatorname{VR}_k(H'_2, S)$, and $\operatorname{VR}_k(H'_3, S)$, where $H'_1 = H' \cup$ $\{p, s\}, H'_2 = H' \cup \{q, s\}, H'_3 =$ $H \cup \{p, q\}$, and $H' = \{t, u\}$. (Note $H'_1 = H_1$ and $H'_2 = H_2$.) Let v_1, v_2, \ldots be a sequence of vertices of $SK_k(p, B_p)$ along the counterclockwise order.

We consider how to compute v_{i+1} from v_i .

- W.l.o.g., we let v_i be the intersection between B(p,q) and B(p,r) and v_{i+1} be B(p,q) and B(p,s). But we do not know s.
- Similarly, for each $q \in S \setminus \{p\}$, let p_q be $\Psi(B(q, p))$.
- $\Psi(v_i)$ is a straight line passing through p_q and p_r .
- Let l be $\Psi(v_i)$, and rotate l at p_q in the direction such that one half-plane contains the origin and exactly k-1 points of $\Psi(B_p)$.
- The rotation will hit p_s first and we obtain v_{i+1} .
- During the rotation, l partition $\Psi(B_p \setminus \{B(p,q)\})$ into the same 2 sets.

Property 6

Let e be an edge of $SK_k(p, S)$ and belong to B(p, q). Let v be an endpoint of e and v be an intersection between B(p, q) and B(p, s). For any point $x \in e$, let \mathcal{P}_1 and \mathcal{P}_2 be the 2-partition of $\Psi(B_p \setminus \{B(p,q)\})$ formed by $\Psi(x)$. Then, $\Psi(B(p,s))$ must be one of four tangent points between $\Psi(B(p,q))$ and the two convex hulls of \mathcal{P}_1 and \mathcal{P}_2 .

Lemma 8

 $\mathrm{SK}_k(p,B_p)$ can be constructed in $O(n\log n + |SK_k(p,B_p)|\log n)$ time. Sketch of proof

- After the sorting, it takes O(n) time to compute a vertex of $SK_k(p, B_p)$ and then view the vertex as the beginning vertex v_1 .
- It sufficient to analyze the time for computing v_{i+1} from v_i .
- Assume that v_i is an intersection between B(p,q) and B(p,r).
- Let \mathcal{P}_1 and \mathcal{P}_2 be the 2-partial of $\Psi(B_p \setminus \{p\})$ formed by $\Psi(v_i)$ and let \mathcal{P}_1 belong to the half-plane containing the origin.
- If v_i is a new Voronoi vertex, $|\mathcal{P}_1| = k 1$.
 - $\operatorname{let} l \operatorname{be} \Psi(v_i)$
 - rotate l at $\Psi(B(p,q))$ such that \mathcal{P}_1 and $\Psi(B(p,r))$ belongs to different half-planes formed by l.
 - Determine that l first touches the convex hull of \mathcal{P}_1 or that of $\mathcal{P}_2 \cup \{\Psi(B(p,r))\}$
 - Let $\Psi(B(p,s))$ be the first touched point of the first touched convex hull. Then v_{i+1} is the intersection between B(p,q) and B(p,s).
- Otherwise, v_i is an old Voronoi vertex, and $|\mathcal{P}_1| = k 2$.
 - $\operatorname{let} l \operatorname{be} \Psi(v_i)$
 - rotate l at $\Psi(B(p,q))$ such that \mathcal{P}_1 and $\Psi(B(p,r))$ belong to the same half-plane formed by l.
 - Determine that l first touches the convex hull of $\mathcal{P}_1 \cup \{\Psi(B(p,r))\}$ or that of \mathcal{P}_2
 - Let $\Psi(B(p,s))$ be the first touched point of the first touched convex hull. Then v_{i+1} is the intersection between B(p,q) and B(p,s).
- Brodal and Jacob proposed a dynamic structure for the convex hulls allowing insertion, deletion, and tangent query in amorted $O(\log n)$ time.
- It takes $O(n \log n)$ time to compute the two initial convex hulls.
- There are $O(|SK_k(p, B_p))|$ insertions, deletions, and tangent queries.

Theorem 5

 $V_k(S)$ can be computed in $O(n^2\log n + k(n-k)\log n)$ time. sketch of proof

- $V_k(S) = \bigcup_{p \in S} SK_k(p, B_p).$
- $\sum_{p \in S} O(n \log n + |SK_k(p, B_p)| \log n) = O(n^2 \log n + k(n-k) \log n)$