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Voronoi Diagram

@ Given a set S of n point sites, Voronoi Diagram V(S) is a
planar subdivision

@ Each region contains exactly one site p € S and is denoted
by VR(p, S).
@ For each point x € VR(p, S), p is its closest site in S.
@ VR(p, S) is the locus of points closer to p than any other
site.
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@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.
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Voronoi Region

@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.
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Voronoi Region

@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.

® D(p,q)={x € R?| d(x,p) < d(x,q)}.
e Two half-planes D(p, q) and D(q, p) separated by B(p, q).

VR(p,S)= () D(p.q).
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Voronoi Edge and Vertex

@ Voronoi Edge

e Common intersection between two adjacent Voronoi
regions VR(p, S) and VR(q, S)
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Voronoi Edge and Vertex

@ Voronoi Edge

e Common intersection between two adjacent Voronoi
regions VR(p, S) and VR(q, S)
e A piece of B(p, q)

@ Voronoi Vertex

e Common intersection among more than two Voronoi
regions VR(p, S), VR(q. S), VR(r, S), and so on.
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Wavefront Model (Growth Model)

@ Grow circles from Vp € S at unit speed
e x € R? is first hit by a circle from p — x belongs to VR(p, S)
e x € R? s first hit by two circles from p and g — x belongs
to a Voronoi edge between VR(p, S) and VR(q, S)
e x € R?is first hit by three circles from p, g, and r — x is a
Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)
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Unbounded Region

@ VR(p, S) is unbounded if and only if p is a vertex of the
convex hull of S.
e Consider the exterior angle bisector of p

e For any point x on the bisector, x belongs to VR(p, S)
e The bisector extends to the infinity.

@ If Sis in convex position, V(S) is a tree.
@ An unbounded Voronoi edge corresponds to a hull edge.




Voronoi Diagram (Mathematic Definition)

@ Voronoi Diagram V/(S)

V(S) = R?\ (|J VR(p, S)) = | 9VR(p. S)
peS peS

e JOVR(p, S) is the boundary of VR(p, S)
® 9VR(p,S) £ VR(p, S)
e V/(S) is the union of all the Voronoi edges

@ Voronoi Edge e between VR(p, S) and VR(q, S)
e = 0VR(p, S)NdVR(q, S)
@ Voronoi Vertex v among VR(p, S), VR(q, S), and VR(r, S)

v = OVR(p, S) N OVR(q, S) N AVR(r, S)



Complexity of V(S)

V(S) has O(n) edges and vertices. The average number of
edges of a Voronoi region is less than 6.

@ Add alarge curve I'
e [ only passes through unbounded edges of V(S)
e Cut unbounded pieces outside I
e One additional face and several edges and vertices.




Complexity of V(S)

V(S) has O(n) edges and vertices. The average number of
edges of a Voronoi region is less than 6.

@ Euler's Polyhedron Formula: v —-e+f=1+c¢

o v: # of vertices, e: # of edges, f: # of faces, and c: #
number of connected components.

@ An edge has two endpoints, and a vertex is incident to at
least three edges.

e 3v<2e—v<2e/3

@ef=n+1andc=1
ev=14+c+e—-f=e+1-n<2¢/3—-e<3n-3
ee=v+f—-1-c=v+n—-1>38v/2—->v<2n-2

@ Average number of edges of a region < (6n—6)/n < 6



Triangulation

Definition

Given a set S of points on the plane, a triangulation is maximal
collection of non-crossing line segments among S.
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Definition

Given a set S of points on the plane, a triangulation is maximal
collection of non-crossing line segments among S.

Triangulation
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through p and g and containing no other point in its interior.
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Delaunay Edge

Definition

An edge pq is called Delaunay if there exists a circle passing
through p and g and containing no other point in its interior.

pq is NOT Delaunay
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Delaunay Triangulation

Definition
A Delaunay Triangulation is a triangulation whose edges are
all Delaunay.

@ For each face, there exists a circle passing all its vertices
and containing no other point.
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General Position Assumption

@ No more than two point sites are colinear
e V(S)is connected
@ No more than three point sites are cocircular
(At most three points are on the same circle)

e degree of each Voronoi vertex is exactly 3.
e Each face of the Delaunay triangulation is a triangle.

@ There is a unique Delaunay triangulation.
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Under the general position assumption, the Delaunay
triangulation is a dual graph of the Voronoi diagram.

@ A site p <» a Voronoi region VR(p, S)

@ A Delaunay edge pq <> a Voronoi edge between VR(p, S)
and VR(q, S)

@ A Delaunay triangle Apqr < a Voronoi vertex among
VR(p, S), VR(q, S) and VR(r, S)




Geometric Transformation from 2D to 3D

@ A paraboloid P = {(x1, X2, X3) | X? + X3 = X3} in 3D
@ For a point x = (x1, x2) in 2D, x" = (xy, X2, X2 + x3) is its
lifted image in 3D
e x’ « vertical projection from x to P
@ For a set A of points in 2D, its lifted image
A= {X"=(x1,X0, X2 + X3) | x = (X1, %) € A}




Circle in 2D < Planar Curve in P

Let C be a circle in the plane. Then C’ is a planar curve on the
paraboloid P

@ Cisgivenby r’ = (xy — ¢1)? + (X2 — ¢2)?
o r2=x2+x2—2x101 —2X2C2 + C2 + C3
o C’ satisfies x2 + x5 = x3
@ Substituting xZ + x3 by x3, we obtain a plane E

X3 — 2X1Cq —2X2C2+C12+C§—f2:0

e C'=PnNnE
@ Intersection between E and P is a planar curve



Lower Convex Hull

@ S on P — S’ in convex position
@ Each point of S’ is a vertex of conv(S')

@ Lower convex hull Iconv(S’) of S’ is the part of conv(S’)
visible from x3 = —o0




Duality between DT(S) and Iconv(S') (1)

The Delaunay triangulation DT(S) equals to the vertical
projection onto the xi x»-plane of the lower convex hull of S’

@ p,q,r e S. C: circumcircle of p,q, r
@ (' lies on a plane E defined by p',q', r’
@ a point x inside C « lifted image x’ below E




Duality between DT(S) and Iconv(S') (2)

The Delaunay triangulation DT(S) equals to the vertical
projection onto the xi1 xo-plane of the lower convex hull of S’

@ p, q, r defines a triangle of DT(S)
<+ no point of Siin C defined by p,q, r
<+ no point of S’ below E defined by p', q', r’
< p',q',r' defines a facet of lconv(S')
@ Computing a convex hull in 3D takes O(nlog n) time
e V(S)in O(nlogn) time




Another Viewpoint of paraboloid

For each s = (s1, s2) € S, a paraboloid

Ps = {(x1,X,X3) | X3 = (x1 — 81)% + (%2 — $2)?}

e For each x = (01, 02) in xy X2 plane, vertical distance from x
to Ps is d(x, s)?

@ Opaque and of pairwise different colors

@ Looking from x3 = —oo upward — V(S)

@ Vertical from x upward first hits Ps — x € VR(p, S)
@ PsnN P — B(s,t)

@ Lower envelope of (J; 5 Ps — V(S)
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@ Ps = {(x1,x2,X3)|x3 = F((xy — 51)° + (X2 — 82)?)}
e fis a strictly increasing function
o Lower envelope of [ J;.5 Ps — V(S)

0 f(x) =Vx=+/(x —51)2+ (x2 — 52)2
e Cones of slope 45° with apices at sites s € S

@ Expanding circles Cs from sites s € S at equal unit speed

o time t =radiusr
o r2 = (X1 — 81)2 + (X2 — 82)2

o x3=+/(X1 — 51)2+ (x2 — S2)2 = radius = time




Wavefront model revisited

@ Ps = {(x1,x2,X3)|x3 = F((xy — 51)° + (X2 — 82)?)}
e fis a strictly increasing function
o Lower envelope of [ J;.5 Ps — V(S)

o f(X) = \/)?: \/(X1 — S1)2 + (X2 — 82)2
e Cones of slope 45° with apices at sites s € S

@ Expanding circles Cs from sites s € S at equal unit speed

o time t =radiusr
o r2 = (X1 — 81)2 + (X2 — 82)2

o x3=+/(X1 — 51)2+ (x2 — S2)2 = radius = time
@ x first hit by Cs <+ upward vertical projection from x first hit
Ps




Post Office Problem

Post Office Problem

Given a query point x = (xq, X2), answer the closest post office
p among S

@ p € Sis the closest post office to x iff x belong to VR(p, S)

@ Compute V(S) in O(nlog n) time
© Construct a point location data structure for V(S) in
O(nlog n) time

@ Answer each query in O(log n) time after O(nlog n)-time
preprocessing
e Locating x in VR(p, S) takes O(log n) time




Nearest Neighbors

Nearest Neighbors

Given a set S of points, for each s € S, compute its nearest
neighbor among S\ {s}

t is the nearest neighbor of s only if (s, t) is an edge of DT(S)

@ A circle growing from s will first hit ¢
— There is a circle touching s and t but empty of S\ {s, t}

The nearest neighbors can be computed in O(nlog n) time

@ DT(S) can be computed in O(nlog n) time
@ Since |DT(S)| is O(n), computing the nearest neighbor
from DT(S) takes O(n) time



Largest Empty Circle

Largest Empty Circle

Given a set S of points inside a conex polygon A, find the
largest circle C whose center is located in A and which enclose
no point of S.

C must touch two or three points of S

@ touch no site: expand it until it touches one sites p
@ touches one site p: expand it until it touches p and g
@ touches p and q: expand it along B(p, q) until

@ the center of C hit the boundary of A

@ C hit the third site r

The center of C is either a Voronoi vertex of V(S) or the
intersection between a Voronoi edge and the boundary of A




Minimum Spanning Tree

Minimum Spanning Tree

Given a set S of points, compute a tree MST(S) connecting all
sites of S with the minimum total length
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Minimum Spanning Tree
Minimum Spanning Tree

Given a set S of points, compute a tree MST(S) connecting all
sites of S with the minimum total length

4

Cut Property

If S is partitioned into A and B, the shortest edge (a, b)
satisfying a € Aand b € Bis an edge of MST(S)

An edge of MST(S) is an edge of DT(S)

@ Each shortest edge (a, b), a€ Aand b € B, is an edge of
DT(S).
@ The circle whose diameter ab enclose no other sites
e Ifitcontains a site @ € A, d(&,b) < d(a, b)



Thank You!!




Divide and Conquer

@ Basic Steps
@ Divide an instance into ¢ equal-size sub-instances
@ If the instance is extremely small, solve it directly instead
@ Recursively compute the sub-solution for each sub-instance

@ Until a sub-instance can be solved in O(1) time
© Merge all the ¢ sub-solutions into one solution

@ If both Divide and Merge take linear time,

T(n)=cT(n/c)+ O(n) => O(nlog n)

e The /™ level has ¢’ parts and each part has n/c’ elements
e Aleveltakes ¢' x O(n/c') = O(n) time
e O(logn) levels
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D & C for Voronoi Diagram

@ Divide and Conquer to Compute V(S)
@ Use a vertical line to partition S into L and R where
L[ ~ AR
@ If |S|is a constant, directly compute V/(S) instead
@ Recursively compute V(L) and V(R)
@ Merge V(L) and V(R) into V(S)
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Merge Chain

@ Merge Chain B(L, R) consists of Voronoi edges between
V(l,S)and V(r,S)where/c Land r € R.




Merge Chain

@ Merge Chain B(L, R) consists of Voronoi edges between
V(l,S)and V(r,S)where/c Land r € R.
e Voronoi edges between L’s regions and R’s regions




Merge Chain

@ Merge Chain B(L, R) consists of Voronoi edges between
V(l,S)and V(r,S)where/c Land r € R.
e Voronoi edges between L’s regions and R’s regions
e d(x, L) =mini,d(x,/) (reps. d(x, R))




Merge Chain

@ Merge Chain B(L, R) consists of Voronoi edges between
V(l,S)and V(r,S)where/c Land r € R.
e Voronoi edges between L’s regions and R’s regions
e d(x, L) =mini,d(x,/) (reps. d(x, R))
e B(L,R)={x € R?| d(x,L) =d(x,R)}




Merge Chain

@ Merge Chain B(L, R) consists of Voronoi edges between
V(l,S)and V(r,S)where/c Land r € R.
e Voronoi edges between L’s regions and R’s regions
e d(x, L) =mini,d(x,/) (reps. d(x, R))
e B(L,R)={x e R?|d(x,L)=d(x,R)}
@ Ve € B(L,R) belongsto B(/,r),/ e Landr € R




If We Have the Merge Chain...

@ Compute V(S)
e Remove the part of V(L) right to B(L, R)
e Remove the part of V(R) left to B(L, R)
o Glue the two remaining parts
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If We Have the Merge Chain...

@ Compute V(S)
e Remove the part of V(L) right to B(L, R)
e Remove the part of V(R) left to B(L, R)
o Glue the two remaining parts

@ B(L,R)is apartof V(S)
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B(L, R) is y-monotone

@ Let b be an edge of B(L, R).
@ bbelongsto V(/,S)and V(r,S),/ e Landr e R
@ Let b be directed such that / in the left of b

@ x-coordinate of / < x-coordinate of r
— b must be upward
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B(L, R) is y-monotone

@ Let b be an edge of B(L, R).
@ bbelongsto V(/,S)and V(r,S),/ e Landr € R
@ Let b be directed such that / in the left of b

@ x-coordinate of / < x-coordinate of r
— b must be upward

Computing B(L, R)

@ Find the bottom edge e of B(L, R) as a starting edge
e eis unbounded and extends to —co

@ Trace out B(L, R) from e
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@ An unbounded Voronoi edge corresponds to an edge of
the convex hull conv(S) of S
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Finding a starting edge of B(L, R)

@ An unbounded Voronoi edge corresponds to an edge of
the convex hull conv(S) of S
e Build conv(L) and conv(R)
@ V(L) and V(R) are known.
e Compute a tangent edge Ir between conv(L) and conv(R)
e B(/,r) is the starting edge
@ O(|L|+|R|) time
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Vi1 € B(l,n)
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Trace B(L, R) in V(I,L) (1)

@ B(L,R)n V(I,L)
e B(L,R) enters V(/,L) at v along B(/,r)
e Counterclockwise along 0V(/, L) from v to find
via € B(l,n)
o After vy, V(I,L) — V(I',L),and B(I,r1) — B(I', ry)
e Clockwise along oV(ry, R) to find vg 1 € B(/, 1)
o After va1, V(r, R) — V(r2, R), and B(/, 1) — B(l, 12)
@ vgr 1 earlierthan v, 1,and B(/,r1) — B(/,r2) at vg 1
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@ B(L,R)n V(I,L)
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@ B(L,R)n V(I,L)
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e Counterclockwise along o V/(/, L) from v, 4 to find
vz € B(l,r2)
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e Clockwise along 9V(rz, R) from vg 1 to find vgo € B(/, 12)
o After vaz, V(r2, R) — V(r3, R), and B(/, 1z) — B(l, rs)




Trace B(L, R) in V(/,L) (2)

@ B(L,R)n V(I,L)
e B(L,R) from vg 1 along B(/, r2)
e Counterclockwise along o V/(/, L) from v, 4 to find
vz € B(l,r2)
o After vio, V(I,L) — V(I',L), and B(I,r2) — B(I', 2)
e Clockwise along 9V(rz, R) from vg 1 to find vgo € B(/, 12)
o After vaz, V(r2, R) — V(r3, R), and B(/, 1z) — B(l, rs)
@ Vg earlierthan v, and B(/,r2) — B(I,r3) at vg»
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Trace B(L, R) in V(I,L) (3)

@ B(L,R)n V(I,L)
e B(L,R) from vg along B(/, r3)
e Counterclockwise along 0 V/(/, L) from v, » to find
Viz € B(lv r3)
o After vis, V(I,L) — V(I",L), and B(l, r3) — B(I", rs)
e Clockwise along 9V/(rs, R) from vg to find vg 3 € B(/, 13)
e No VR,3
e B(l,r3) = B(I",r3) at v 3




Time to Compute B(L, R)

Computing B(L, R) takes O(|L| + |R]) = O(|S]) time

@ Finding the starting edge takes O(|L| + |R|) time
@ Traversing V(L) takes O(|V(L)|) time (V(R) — O(|V(R)|))

e Enter each V(/,L) and its boundary at most once
@ There are O(|B(L, R)|) intersections

e Each edge of B(L, R) makes two intersections.
o O(|L| +|R|)+O( V(L)) + O(V(R)]) + O(IB(L, R)[)

= O(IL[ + [Rl + [L] + |L] + [S]) = O(]S])
o O(|V(L)]) = O(IL]), O(IV(R)I) = O(|RI), and
O(IB(L, R)|) = O(IS])



Time Complexity

The divide-and-conquer algorithm computes V(S) in O(nlog n)
time

@ Sorting takes O(nlog n) time (only do once)

@ A sub-instance S’ C S takes O(|S'|) time
e Partitioning S’ into L” and R’ takes O(|S’|) time
e Computing B(L', R') takes O(|S’|) time

@ The i™-level takes O(2') x O(n/2') = O(n) time
e O(2') sub-instances each with O(n/2') sites

@ O(logn) levels




Time Complexity

The divide-and-conquer algorithm computes V(S) in O(nlog n)
time

@ Sorting takes O(nlog n) time (only do once)

@ A sub-instance S’ C S takes O(|S'|) time
e Partitioning S’ into L” and R’ takes O(|S’|) time
e Computing B(L', R') takes O(|S’]) time

@ The i™-level takes O(2') x O(n/2') = O(n) time
e O(2') sub-instances each with O(n/2') sites

@ O(logn) levels

@ T(n)=0(n)+2-T(n/2) => T(n) = O(nlog n)



