
Voronoi Diagram and Delaunay Triangulation

Chih-Hung Liu

University of Bonn

Outline

1 Voronoi Diagrams and Delaunay Triangulations
Properties and Duality

2 3D geometric transformation
3 Applications

Voronoi Diagram

Given a set S of n point sites, Voronoi Diagram V (S) is a
planar subdivision

1 Each region contains exactly one site p ∈ S and is denoted
by VR(p,S).

2 For each point x ∈ VR(p,S), p is its closest site in S.

VR(p,S) is the locus of points closer to p than any other
site.

Voronoi Diagram

Given a set S of n point sites, Voronoi Diagram V (S) is a
planar subdivision

1 Each region contains exactly one site p ∈ S and is denoted
by VR(p,S).

2 For each point x ∈ VR(p,S), p is its closest site in S.

VR(p,S) is the locus of points closer to p than any other
site.

Voronoi Diagram

Given a set S of n point sites, Voronoi Diagram V (S) is a
planar subdivision

1 Each region contains exactly one site p ∈ S and is denoted
by VR(p,S).

2 For each point x ∈ VR(p,S), p is its closest site in S.

VR(p,S) is the locus of points closer to p than any other
site.

Voronoi Diagram

Given a set S of n point sites, Voronoi Diagram V (S) is a
planar subdivision

1 Each region contains exactly one site p ∈ S and is denoted
by VR(p,S).

2 For each point x ∈ VR(p,S), p is its closest site in S.

VR(p,S) is the locus of points closer to p than any other
site.

p

Voronoi Diagram

Given a set S of n point sites, Voronoi Diagram V (S) is a
planar subdivision

1 Each region contains exactly one site p ∈ S and is denoted
by VR(p,S).

2 For each point x ∈ VR(p,S), p is its closest site in S.

VR(p,S) is the locus of points closer to p than any other
site.

p

Voronoi Diagram

Given a set S of n point sites, Voronoi Diagram V (S) is a
planar subdivision

1 Each region contains exactly one site p ∈ S and is denoted
by VR(p,S).

2 For each point x ∈ VR(p,S), p is its closest site in S.

VR(p,S) is the locus of points closer to p than any other
site.

p

x

Voronoi Diagram

Given a set S of n point sites, Voronoi Diagram V (S) is a
planar subdivision

1 Each region contains exactly one site p ∈ S and is denoted
by VR(p,S).

2 For each point x ∈ VR(p,S), p is its closest site in S.

VR(p,S) is the locus of points closer to p than any other
site.

p

x

Voronoi Region

Bisector B(p,q)= {x ∈ R2 | d(x ,p) = d(x ,q)}.

D(p,q)= {x ∈ R2 | d(x ,p) < d(x ,q)}.

Two half-planes D(p,q) and D(q,p) separated by B(p,q).

VR(p,S) =
⋂

q∈S,q 6=p

D(p,q).

p

q

B(p, q)

Voronoi Region

Bisector B(p,q)= {x ∈ R2 | d(x ,p) = d(x ,q)}.
D(p,q)= {x ∈ R2 | d(x ,p) < d(x ,q)}.

Two half-planes D(p,q) and D(q,p) separated by B(p,q).

VR(p,S) =
⋂

q∈S,q 6=p

D(p,q).

p

q

B(p, q)
D(p, q)

D(q, p)

Voronoi Region

Bisector B(p,q)= {x ∈ R2 | d(x ,p) = d(x ,q)}.
D(p,q)= {x ∈ R2 | d(x ,p) < d(x ,q)}.

Two half-planes D(p,q) and D(q,p) separated by B(p,q).

VR(p,S) =
⋂

q∈S,q 6=p

D(p,q).

p q

D(p, q) D(q, p)

Voronoi Region

Bisector B(p,q)= {x ∈ R2 | d(x ,p) = d(x ,q)}.
D(p,q)= {x ∈ R2 | d(x ,p) < d(x ,q)}.

Two half-planes D(p,q) and D(q,p) separated by B(p,q).

VR(p,S) =
⋂

q∈S,q 6=p

D(p,q).

p
q

D(p, q) D(q, p)

Voronoi Region

Bisector B(p,q)= {x ∈ R2 | d(x ,p) = d(x ,q)}.
D(p,q)= {x ∈ R2 | d(x ,p) < d(x ,q)}.

Two half-planes D(p,q) and D(q,p) separated by B(p,q).

VR(p,S) =
⋂

q∈S,q 6=p

D(p,q).

p

Voronoi Region

Bisector B(p,q)= {x ∈ R2 | d(x ,p) = d(x ,q)}.
D(p,q)= {x ∈ R2 | d(x ,p) < d(x ,q)}.

Two half-planes D(p,q) and D(q,p) separated by B(p,q).

VR(p,S) =
⋂

q∈S,q 6=p

D(p,q).

p

Voronoi Edge and Vertex

Voronoi Edge
Common intersection between two adjacent Voronoi
regions VR(p,S) and VR(q,S)

A piece of B(p,q)

Voronoi Vertex

Common intersection among more than two Voronoi
regions VR(p,S), VR(q,S), VR(r ,S), and so on.

Voronoi Edge and Vertex

Voronoi Edge
Common intersection between two adjacent Voronoi
regions VR(p,S) and VR(q,S)
A piece of B(p,q)

Voronoi Vertex

Common intersection among more than two Voronoi
regions VR(p,S), VR(q,S), VR(r ,S), and so on.

p

q

Voronoi Edge and Vertex

Voronoi Edge
Common intersection between two adjacent Voronoi
regions VR(p,S) and VR(q,S)
A piece of B(p,q)

Voronoi Vertex

Common intersection among more than two Voronoi
regions VR(p,S), VR(q,S), VR(r ,S), and so on.

p
q

Voronoi Edge and Vertex

Voronoi Edge
Common intersection between two adjacent Voronoi
regions VR(p,S) and VR(q,S)
A piece of B(p,q)

Voronoi Vertex
Common intersection among more than two Voronoi
regions VR(p,S), VR(q,S), VR(r ,S), and so on.

p

q

r

Growing Circle

Grow a circle from a point x on the plane

Hit one site p ∈ S → x belongs to VR(p,S)
Hit two sites p,q ∈ S → x belongs to the Voronoi edge
between VR(p,S) and VR(q,S)
Hit more than two sites p,q, r , . . . ∈ S → x is the Voronoi
vertex among VR(p,S), VR(q,S), VR(r ,S), . . .

x

Growing Circle

Grow a circle from a point x on the plane

Hit one site p ∈ S → x belongs to VR(p,S)
Hit two sites p,q ∈ S → x belongs to the Voronoi edge
between VR(p,S) and VR(q,S)
Hit more than two sites p,q, r , . . . ∈ S → x is the Voronoi
vertex among VR(p,S), VR(q,S), VR(r ,S), . . .

x

Growing Circle

Grow a circle from a point x on the plane
Hit one site p ∈ S → x belongs to VR(p,S)

Hit two sites p,q ∈ S → x belongs to the Voronoi edge
between VR(p,S) and VR(q,S)
Hit more than two sites p,q, r , . . . ∈ S → x is the Voronoi
vertex among VR(p,S), VR(q,S), VR(r ,S), . . .

x

p

Growing Circle

Grow a circle from a point x on the plane
Hit one site p ∈ S → x belongs to VR(p,S)

Hit two sites p,q ∈ S → x belongs to the Voronoi edge
between VR(p,S) and VR(q,S)
Hit more than two sites p,q, r , . . . ∈ S → x is the Voronoi
vertex among VR(p,S), VR(q,S), VR(r ,S), . . .

x

p

Growing Circle

Grow a circle from a point x on the plane
Hit one site p ∈ S → x belongs to VR(p,S)

Hit two sites p,q ∈ S → x belongs to the Voronoi edge
between VR(p,S) and VR(q,S)
Hit more than two sites p,q, r , . . . ∈ S → x is the Voronoi
vertex among VR(p,S), VR(q,S), VR(r ,S), . . .

x

Growing Circle

Grow a circle from a point x on the plane
Hit one site p ∈ S → x belongs to VR(p,S)
Hit two sites p,q ∈ S → x belongs to the Voronoi edge
between VR(p,S) and VR(q,S)

Hit more than two sites p,q, r , . . . ∈ S → x is the Voronoi
vertex among VR(p,S), VR(q,S), VR(r ,S), . . .

x

p

q

Growing Circle

Grow a circle from a point x on the plane
Hit one site p ∈ S → x belongs to VR(p,S)
Hit two sites p,q ∈ S → x belongs to the Voronoi edge
between VR(p,S) and VR(q,S)

Hit more than two sites p,q, r , . . . ∈ S → x is the Voronoi
vertex among VR(p,S), VR(q,S), VR(r ,S), . . .

p

q

x

Growing Circle

Grow a circle from a point x on the plane
Hit one site p ∈ S → x belongs to VR(p,S)
Hit two sites p,q ∈ S → x belongs to the Voronoi edge
between VR(p,S) and VR(q,S)

Hit more than two sites p,q, r , . . . ∈ S → x is the Voronoi
vertex among VR(p,S), VR(q,S), VR(r ,S), . . .

x

Growing Circle

Grow a circle from a point x on the plane
Hit one site p ∈ S → x belongs to VR(p,S)
Hit two sites p,q ∈ S → x belongs to the Voronoi edge
between VR(p,S) and VR(q,S)
Hit more than two sites p,q, r , . . . ∈ S → x is the Voronoi
vertex among VR(p,S), VR(q,S), VR(r ,S), . . .

x

p
r

q

Growing Circle

Grow a circle from a point x on the plane
Hit one site p ∈ S → x belongs to VR(p,S)
Hit two sites p,q ∈ S → x belongs to the Voronoi edge
between VR(p,S) and VR(q,S)
Hit more than two sites p,q, r , . . . ∈ S → x is the Voronoi
vertex among VR(p,S), VR(q,S), VR(r ,S), . . .

x

p
r

q

Wavefront Model (Growth Model)

Grow circles from ∀p ∈ S at unit speed

x ∈ R2 is first hit by a circle from p → x belongs to VR(p,S)
x ∈ R2 is first hit by two circles from p and q → x belongs
to a Voronoi edge between VR(p,S) and VR(q,S)
x ∈ R2 is first hit by three circles from p, q, and r → x is a
Voronoi vertex among VR(p,S), VR(q,S) and VR(r ,S)

Wavefront Model (Growth Model)

Grow circles from ∀p ∈ S at unit speed

x ∈ R2 is first hit by a circle from p → x belongs to VR(p,S)
x ∈ R2 is first hit by two circles from p and q → x belongs
to a Voronoi edge between VR(p,S) and VR(q,S)
x ∈ R2 is first hit by three circles from p, q, and r → x is a
Voronoi vertex among VR(p,S), VR(q,S) and VR(r ,S)

px

Wavefront Model (Growth Model)

Grow circles from ∀p ∈ S at unit speed
x ∈ R2 is first hit by a circle from p → x belongs to VR(p,S)

x ∈ R2 is first hit by two circles from p and q → x belongs
to a Voronoi edge between VR(p,S) and VR(q,S)
x ∈ R2 is first hit by three circles from p, q, and r → x is a
Voronoi vertex among VR(p,S), VR(q,S) and VR(r ,S)

px

Wavefront Model (Growth Model)

Grow circles from ∀p ∈ S at unit speed
x ∈ R2 is first hit by a circle from p → x belongs to VR(p,S)

x ∈ R2 is first hit by two circles from p and q → x belongs
to a Voronoi edge between VR(p,S) and VR(q,S)
x ∈ R2 is first hit by three circles from p, q, and r → x is a
Voronoi vertex among VR(p,S), VR(q,S) and VR(r ,S)

x p

Wavefront Model (Growth Model)

Grow circles from ∀p ∈ S at unit speed
x ∈ R2 is first hit by a circle from p → x belongs to VR(p,S)
x ∈ R2 is first hit by two circles from p and q → x belongs
to a Voronoi edge between VR(p,S) and VR(q,S)

x ∈ R2 is first hit by three circles from p, q, and r → x is a
Voronoi vertex among VR(p,S), VR(q,S) and VR(r ,S)

p

q

x

Wavefront Model (Growth Model)

Grow circles from ∀p ∈ S at unit speed
x ∈ R2 is first hit by a circle from p → x belongs to VR(p,S)
x ∈ R2 is first hit by two circles from p and q → x belongs
to a Voronoi edge between VR(p,S) and VR(q,S)

x ∈ R2 is first hit by three circles from p, q, and r → x is a
Voronoi vertex among VR(p,S), VR(q,S) and VR(r ,S)

p

q

x

Wavefront Model (Growth Model)

Grow circles from ∀p ∈ S at unit speed
x ∈ R2 is first hit by a circle from p → x belongs to VR(p,S)
x ∈ R2 is first hit by two circles from p and q → x belongs
to a Voronoi edge between VR(p,S) and VR(q,S)
x ∈ R2 is first hit by three circles from p, q, and r → x is a
Voronoi vertex among VR(p,S), VR(q,S) and VR(r ,S)

p

q

r

x

Wavefront Model (Growth Model)

Grow circles from ∀p ∈ S at unit speed
x ∈ R2 is first hit by a circle from p → x belongs to VR(p,S)
x ∈ R2 is first hit by two circles from p and q → x belongs
to a Voronoi edge between VR(p,S) and VR(q,S)
x ∈ R2 is first hit by three circles from p, q, and r → x is a
Voronoi vertex among VR(p,S), VR(q,S) and VR(r ,S)

p

q

r

x

Unbounded Region

VR(p,S) is unbounded if and only if p is a vertex of the
convex hull of S.

Consider the exterior angle bisector of p
For any point x on the bisector, x belongs to VR(p,S)
The bisector extends to the infinity.

If S is in convex position, V (S) is a tree.
An unbounded Voronoi edge corresponds to a hull edge.

p

Unbounded Region

VR(p,S) is unbounded if and only if p is a vertex of the
convex hull of S.

Consider the exterior angle bisector of p

For any point x on the bisector, x belongs to VR(p,S)
The bisector extends to the infinity.

If S is in convex position, V (S) is a tree.
An unbounded Voronoi edge corresponds to a hull edge.

p

Unbounded Region

VR(p,S) is unbounded if and only if p is a vertex of the
convex hull of S.

Consider the exterior angle bisector of p
For any point x on the bisector, x belongs to VR(p,S)

The bisector extends to the infinity.

If S is in convex position, V (S) is a tree.
An unbounded Voronoi edge corresponds to a hull edge.

p

x

Unbounded Region

VR(p,S) is unbounded if and only if p is a vertex of the
convex hull of S.

Consider the exterior angle bisector of p
For any point x on the bisector, x belongs to VR(p,S)

The bisector extends to the infinity.

If S is in convex position, V (S) is a tree.
An unbounded Voronoi edge corresponds to a hull edge.

p

x

Unbounded Region

VR(p,S) is unbounded if and only if p is a vertex of the
convex hull of S.

Consider the exterior angle bisector of p
For any point x on the bisector, x belongs to VR(p,S)
The bisector extends to the infinity.

If S is in convex position, V (S) is a tree.
An unbounded Voronoi edge corresponds to a hull edge.

p

x

Unbounded Region

VR(p,S) is unbounded if and only if p is a vertex of the
convex hull of S.

Consider the exterior angle bisector of p
For any point x on the bisector, x belongs to VR(p,S)
The bisector extends to the infinity.

If S is in convex position, V (S) is a tree.

An unbounded Voronoi edge corresponds to a hull edge.

Unbounded Region

VR(p,S) is unbounded if and only if p is a vertex of the
convex hull of S.

Consider the exterior angle bisector of p
For any point x on the bisector, x belongs to VR(p,S)
The bisector extends to the infinity.

If S is in convex position, V (S) is a tree.
An unbounded Voronoi edge corresponds to a hull edge.

Voronoi Diagram (Mathematic Definition)

Voronoi Diagram V (S)

V (S) = R2 \ (
⋃
p∈S

VR(p,S)) =
⋃
p∈S

∂VR(p,S)

∂VR(p,S) is the boundary of VR(p,S)

∂VR(p,S) 6⊂ VR(p,S)

V (S) is the union of all the Voronoi edges

Voronoi Edge e between VR(p,S) and VR(q,S)

e = ∂VR(p,S) ∩ ∂VR(q,S)

Voronoi Vertex v among VR(p,S), VR(q,S), and VR(r ,S)

v = ∂VR(p,S) ∩ ∂VR(q,S) ∩ ∂VR(r ,S)

Complexity of V (S)

Theorem
V (S) has O(n) edges and vertices. The average number of
edges of a Voronoi region is less than 6.

Add a large curve Γ
Γ only passes through unbounded edges of V (S)
Cut unbounded pieces outside Γ
One additional face and several edges and vertices.

Complexity of V (S)

Theorem
V (S) has O(n) edges and vertices. The average number of
edges of a Voronoi region is less than 6.

Euler’s Polyhedron Formula: v − e + f = 1 + c
v : # of vertices, e: # of edges, f : # of faces, and c: #
number of connected components.

An edge has two endpoints, and a vertex is incident to at
least three edges.

3v ≤ 2e→ v ≤ 2e/3
f = n + 1 and c = 1

v = 1 + c + e − f = e + 1− n ≤ 2e/3→ e ≤ 3n − 3
e = v + f − 1− c = v + n − 1 ≥ 3v/2→ v ≤ 2n − 2

Average number of edges of a region ≤ (6n − 6)/n < 6

Triangulation

Definition
Given a set S of points on the plane, a triangulation is maximal
collection of non-crossing line segments among S.

Crossing (pq)

p

q

Triangulation

Definition
Given a set S of points on the plane, a triangulation is maximal
collection of non-crossing line segments among S.

Not Maximal (pq is allowable)

p

q

Triangulation

Definition
Given a set S of points on the plane, a triangulation is maximal
collection of non-crossing line segments among S.

Triangulation

Delaunay Edge

Definition
An edge pq is called Delaunay if there exists a circle passing
through p and q and containing no other point in its interior.

pq is Delaunay

p

q

Delaunay Edge

Definition
An edge pq is called Delaunay if there exists a circle passing
through p and q and containing no other point in its interior.

pq is Delaunay

p

q

Delaunay Edge

Definition
An edge pq is called Delaunay if there exists a circle passing
through p and q and containing no other point in its interior.

pq is NOT Delaunay

p
q

Delaunay Triangulation

Definition
A Delaunay Triangulation is a triangulation whose edges are
all Delaunay.

For each face, there exists a circle passing all its vertices
and containing no other point.

Delaunay Triangulation

Definition
A Delaunay Triangulation is a triangulation whose edges are
all Delaunay.

For each face, there exists a circle passing all its vertices
and containing no other point.

Delaunay Triangulation

Definition
A Delaunay Triangulation is a triangulation whose edges are
all Delaunay.

For each face, there exists a circle passing all its vertices
and containing no other point.

Delaunay Triangulation

Definition
A Delaunay Triangulation is a triangulation whose edges are
all Delaunay.

For each face, there exists a circle passing all its vertices
and containing no other point.

General Position Assumption

1 No more than two point sites are colinear

V (S) is connected
2 No more than three point sites are cocircular

(At most three points are on the same circle)

degree of each Voronoi vertex is exactly 3.
Each face of the Delaunay triangulation is a triangle.

There is a unique Delaunay triangulation.

General Position Assumption

1 No more than two point sites are colinear
V (S) is connected

2 No more than three point sites are cocircular
(At most three points are on the same circle)

degree of each Voronoi vertex is exactly 3.
Each face of the Delaunay triangulation is a triangle.

There is a unique Delaunay triangulation.

General Position Assumption

1 No more than two point sites are colinear
V (S) is connected

2 No more than three point sites are cocircular
(At most three points are on the same circle)

degree of each Voronoi vertex is exactly 3.
Each face of the Delaunay triangulation is a triangle.

There is a unique Delaunay triangulation.

General Position Assumption

1 No more than two point sites are colinear
V (S) is connected

2 No more than three point sites are cocircular
(At most three points are on the same circle)

degree of each Voronoi vertex is exactly 3.

Each face of the Delaunay triangulation is a triangle.

There is a unique Delaunay triangulation.

General Position Assumption

1 No more than two point sites are colinear
V (S) is connected

2 No more than three point sites are cocircular
(At most three points are on the same circle)

degree of each Voronoi vertex is exactly 3.
Each face of the Delaunay triangulation is a triangle.

There is a unique Delaunay triangulation.

General Position Assumption

1 No more than two point sites are colinear
V (S) is connected

2 No more than three point sites are cocircular
(At most three points are on the same circle)

degree of each Voronoi vertex is exactly 3.
Each face of the Delaunay triangulation is a triangle.

There is a unique Delaunay triangulation.

Duality

Theorem
Under the general position assumption, the Delaunay
triangulation is a dual graph of the Voronoi diagram.

A site p ↔ a Voronoi region VR(p,S)

A Delaunay edge pq ↔ a Voronoi edge between VR(p,S)
and VR(q,S)
A Delaunay triangle ∆pqr ↔ a Voronoi vertex among
VR(p,S), VR(q,S) and VR(r ,S)

Duality

Theorem
Under the general position assumption, the Delaunay
triangulation is a dual graph of the Voronoi diagram.

A site p ↔ a Voronoi region VR(p,S)
A Delaunay edge pq ↔ a Voronoi edge between VR(p,S)
and VR(q,S)

A Delaunay triangle ∆pqr ↔ a Voronoi vertex among
VR(p,S), VR(q,S) and VR(r ,S)

p

q

p

q

x x

Duality

Theorem
Under the general position assumption, the Delaunay
triangulation is a dual graph of the Voronoi diagram.

A site p ↔ a Voronoi region VR(p,S)
A Delaunay edge pq ↔ a Voronoi edge between VR(p,S)
and VR(q,S)
A Delaunay triangle ∆pqr ↔ a Voronoi vertex among
VR(p,S), VR(q,S) and VR(r ,S)

p

q q

r
p

r

x x

Geometric Transformation from 2D to 3D

A paraboloid P = {(x1, x2, x3) | x2
1 + x2

2 = x3} in 3D

For a point x = (x1, x2) in 2D, x ′ = (x1, x2, x2
1 + x2

2) is its
lifted image in 3D

x ′ ← vertical projection from x to P

For a set A of points in 2D, its lifted image
A′= {x ′ = (x1, x2, x2

1 + x2
2) | x = (x1, x2) ∈ A}

E
Z

C’

C

p

p’

q

q’

r

r’

x
3
=x

1
2+x

2
2

Circle in 2D↔ Planar Curve in P

Lemma
Let C be a circle in the plane. Then C′ is a planar curve on the
paraboloid P

C is given by r2 = (x1 − c1)2 + (x2 − c2)2

r2 = x2
1 + x2

2 − 2x1c1 − 2x2c2 + c2
1 + c2

2

C′ satisfies x2
1 + x2

2 = x3

Substituting x2
1 + x2

2 by x3, we obtain a plane E

x3 − 2x1c1 − 2x2c2 + c2
1 + c2

2 − r2 = 0

C′ = P ∩ E
Intersection between E and P is a planar curve

Lower Convex Hull

S′ on P → S′ in convex position
Each point of S′ is a vertex of conv(S′)

Lower convex hull lconv(S′) of S′ is the part of conv(S′)
visible from x3 = −∞

Duality between DT(S) and lconv(S′) (1)

Theorem
The Delaunay triangulation DT(S) equals to the vertical
projection onto the x1x2-plane of the lower convex hull of S′

p,q, r ∈ S. C: circumcircle of p,q, r
C′ lies on a plane E defined by p′,q′, r ′

a point x inside C ↔ lifted image x ′ below E

E
Z

C’

C

p

p’

q

q’

r

r’

x
3
=x

1
2+x

2
2

Duality between DT(S) and lconv(S′) (2)

Theorem
The Delaunay triangulation DT(S) equals to the vertical
projection onto the x1x2-plane of the lower convex hull of S′

p,q, r defines a triangle of DT(S)
↔ no point of S in C defined by p,q, r
↔ no point of S′ below E defined by p′,q′, r ′

↔ p′,q′, r ′ defines a facet of lconv(S′)

Computing a convex hull in 3D takes O(n log n) time
V (S) in O(n log n) time

Another Viewpoint of paraboloid

For each s = (s1, s2) ∈ S, a paraboloid

Ps = {(x1, x2, x3) | x3 = (x1 − s1)2 + (x2 − s2)2}

For each x = (σ1, σ2) in x1x2 plane, vertical distance from x
to Ps is d(x , s)2

Opaque and of pairwise different colors
Looking from x3 = −∞ upward→ V (S)

Vertical from x upward first hits Ps → x ∈ VR(p,S)

Ps ∩ Pt → B(s, t)
Lower envelope of

⋃
s∈S Ps → V (S)

Wavefront model revisited

Ps = {(x1, x2, x3)|x3 = f ((x1 − s1)2 + (x2 − s2)2)}
f is a strictly increasing function
Lower envelope of

⋃
s∈S Ps → V (S)

f (x) =
√

x =
√

(x1 − s1)2 + (x2 − s2)2

Cones of slope 45◦ with apices at sites s ∈ S

Expanding circles Cs from sites s ∈ S at equal unit speed
time t = radius r
r2 = (x1 − s1)2 + (x2 − s2)2

x3 =
√

(x1 − s1)2 + (x2 − s2)2 = radius = time

x first hit by Cs ↔ upward vertical projection from x first hit
Ps

Wavefront model revisited

Ps = {(x1, x2, x3)|x3 = f ((x1 − s1)2 + (x2 − s2)2)}
f is a strictly increasing function
Lower envelope of

⋃
s∈S Ps → V (S)

f (x) =
√

x =
√

(x1 − s1)2 + (x2 − s2)2

Cones of slope 45◦ with apices at sites s ∈ S
Expanding circles Cs from sites s ∈ S at equal unit speed

time t = radius r
r2 = (x1 − s1)2 + (x2 − s2)2

x3 =
√

(x1 − s1)2 + (x2 − s2)2 = radius = time

x first hit by Cs ↔ upward vertical projection from x first hit
Ps

Wavefront model revisited

Ps = {(x1, x2, x3)|x3 = f ((x1 − s1)2 + (x2 − s2)2)}
f is a strictly increasing function
Lower envelope of

⋃
s∈S Ps → V (S)

f (x) =
√

x =
√

(x1 − s1)2 + (x2 − s2)2

Cones of slope 45◦ with apices at sites s ∈ S

Expanding circles Cs from sites s ∈ S at equal unit speed
time t = radius r
r2 = (x1 − s1)2 + (x2 − s2)2

x3 =
√

(x1 − s1)2 + (x2 − s2)2 = radius = time

x first hit by Cs ↔ upward vertical projection from x first hit
Ps

Wavefront model revisited

Ps = {(x1, x2, x3)|x3 = f ((x1 − s1)2 + (x2 − s2)2)}
f is a strictly increasing function
Lower envelope of

⋃
s∈S Ps → V (S)

f (x) =
√

x =
√

(x1 − s1)2 + (x2 − s2)2

Cones of slope 45◦ with apices at sites s ∈ S
Expanding circles Cs from sites s ∈ S at equal unit speed

time t = radius r
r2 = (x1 − s1)2 + (x2 − s2)2

x3 =
√

(x1 − s1)2 + (x2 − s2)2 = radius = time

x first hit by Cs ↔ upward vertical projection from x first hit
Ps

Wavefront model revisited

Ps = {(x1, x2, x3)|x3 = f ((x1 − s1)2 + (x2 − s2)2)}
f is a strictly increasing function
Lower envelope of

⋃
s∈S Ps → V (S)

f (x) =
√

x =
√

(x1 − s1)2 + (x2 − s2)2

Cones of slope 45◦ with apices at sites s ∈ S
Expanding circles Cs from sites s ∈ S at equal unit speed

time t = radius r
r2 = (x1 − s1)2 + (x2 − s2)2

x3 =
√

(x1 − s1)2 + (x2 − s2)2 = radius = time

x first hit by Cs ↔ upward vertical projection from x first hit
Ps

Post Office Problem

Post Office Problem
Given a query point x = (x1, x2), answer the closest post office
p among S

p ∈ S is the closest post office to x iff x belong to VR(p,S)

1 Compute V (S) in O(n log n) time
2 Construct a point location data structure for V (S) in

O(n log n) time

Answer each query in O(log n) time after O(n log n)-time
preprocessing

Locating x in VR(p,S) takes O(log n) time

Nearest Neighbors

Nearest Neighbors
Given a set S of points, for each s ∈ S, compute its nearest
neighbor among S \ {s}

Lemma
t is the nearest neighbor of s only if (s, t) is an edge of DT(S)

A circle growing from s will first hit t
→ There is a circle touching s and t but empty of S \ {s, t}

Theorem
The nearest neighbors can be computed in O(n log n) time

DT(S) can be computed in O(n log n) time
Since |DT(S)| is O(n), computing the nearest neighbor
from DT(S) takes O(n) time

Largest Empty Circle

Largest Empty Circle
Given a set S of points inside a conex polygon A, find the
largest circle C whose center is located in A and which enclose
no point of S.

Lemma
C must touch two or three points of S

touch no site: expand it until it touches one sites p
touches one site p: expand it until it touches p and q
touches p and q: expand it along B(p,q) until

1 the center of C hit the boundary of A
2 C hit the third site r

Theorem
The center of C is either a Voronoi vertex of V (S) or the
intersection between a Voronoi edge and the boundary of A

Minimum Spanning Tree

Minimum Spanning Tree

Given a set S of points, compute a tree MST(S) connecting all
sites of S with the minimum total length

Minimum Spanning Tree

Minimum Spanning Tree

Given a set S of points, compute a tree MST(S) connecting all
sites of S with the minimum total length

Cut Property

If S is partitioned into A and B, the shortest edge (a,b)
satisfying a ∈ A and b ∈ B is an edge of MST(S)

Minimum Spanning Tree

Minimum Spanning Tree

Given a set S of points, compute a tree MST(S) connecting all
sites of S with the minimum total length

Cut Property

If S is partitioned into A and B, the shortest edge (a,b)
satisfying a ∈ A and b ∈ B is an edge of MST(S)

Theorem
An edge of MST(S) is an edge of DT(S)

Each shortest edge (a,b), a ∈ A and b ∈ B, is an edge of
DT(S).
The circle whose diameter ab enclose no other sites

If it contains a site a′ ∈ A, d(a′,b) < d(a,b)

Thank You!!

Divide and Conquer

Basic Steps
1 Divide an instance into c equal-size sub-instances

If the instance is extremely small, solve it directly instead
2 Recursively compute the sub-solution for each sub-instance

Until a sub-instance can be solved in O(1) time
3 Merge all the c sub-solutions into one solution

If both Divide and Merge take linear time,

T (n) = cT (n/c) + O(n) => O(n log n)

The i th level has c i parts and each part has n/c i elements
A level takes c i ×O(n/c i) = O(n) time
O(log n) levels

Example: Convex Hull

n = 12 and c = 2

Example: Convex Hull

n = 12 and c = 2

Example: Convex Hull

n = 12 and c = 2

Example: Convex Hull

n = 12 and c = 2

Example: Convex Hull

n = 12 and c = 2

Example: Convex Hull

n = 12 and c = 2

Example: Convex Hull

n = 12 and c = 2

D & C for Voronoi Diagram

Divide and Conquer to Compute V (S)
1 Use a vertical line to partition S into L and R where
|L| ∼ |R|

If |S| is a constant, directly compute V (S) instead
2 Recursively compute V (L) and V (R)
3 Merge V (L) and V (R) into V (S)

S

D & C for Voronoi Diagram

Divide and Conquer to Compute V (S)
1 Use a vertical line to partition S into L and R where
|L| ∼ |R|

If |S| is a constant, directly compute V (S) instead
2 Recursively compute V (L) and V (R)
3 Merge V (L) and V (R) into V (S)

L R

D & C for Voronoi Diagram

Divide and Conquer to Compute V (S)
1 Use a vertical line to partition S into L and R where
|L| ∼ |R|

If |S| is a constant, directly compute V (S) instead
2 Recursively compute V (L) and V (R)
3 Merge V (L) and V (R) into V (S)

V (L) V (R)

D & C for Voronoi Diagram

Divide and Conquer to Compute V (S)
1 Use a vertical line to partition S into L and R where
|L| ∼ |R|

If |S| is a constant, directly compute V (S) instead
2 Recursively compute V (L) and V (R)
3 Merge V (L) and V (R) into V (S)

V (S)

Merge Chain

Merge Chain B(L,R) consists of Voronoi edges between
V (l ,S) and V (r ,S) where l ∈ L and r ∈ R.

Voronoi edges between L’s regions and R’s regions
d(x ,L) = minl∈Ld(x , l) (reps. d(x ,R))
B(L,R) = {x ∈ R2 | d(x ,L) = d(x ,R)}

∀e ∈ B(L,R) belongs to B(l , r), l ∈ L and r ∈ R

V (S)

B(L,R)

l rx

Merge Chain

Merge Chain B(L,R) consists of Voronoi edges between
V (l ,S) and V (r ,S) where l ∈ L and r ∈ R.

Voronoi edges between L’s regions and R’s regions

d(x ,L) = minl∈Ld(x , l) (reps. d(x ,R))
B(L,R) = {x ∈ R2 | d(x ,L) = d(x ,R)}

∀e ∈ B(L,R) belongs to B(l , r), l ∈ L and r ∈ R

V (S)

B(L,R)

l rx

Merge Chain

Merge Chain B(L,R) consists of Voronoi edges between
V (l ,S) and V (r ,S) where l ∈ L and r ∈ R.

Voronoi edges between L’s regions and R’s regions
d(x ,L) = minl∈Ld(x , l) (reps. d(x ,R))

B(L,R) = {x ∈ R2 | d(x ,L) = d(x ,R)}

∀e ∈ B(L,R) belongs to B(l , r), l ∈ L and r ∈ R

V (S)

B(L,R)

l rx

Merge Chain

Merge Chain B(L,R) consists of Voronoi edges between
V (l ,S) and V (r ,S) where l ∈ L and r ∈ R.

Voronoi edges between L’s regions and R’s regions
d(x ,L) = minl∈Ld(x , l) (reps. d(x ,R))
B(L,R) = {x ∈ R2 | d(x ,L) = d(x ,R)}

∀e ∈ B(L,R) belongs to B(l , r), l ∈ L and r ∈ R

V (S)

B(L,R)

l rx

Merge Chain

Merge Chain B(L,R) consists of Voronoi edges between
V (l ,S) and V (r ,S) where l ∈ L and r ∈ R.

Voronoi edges between L’s regions and R’s regions
d(x ,L) = minl∈Ld(x , l) (reps. d(x ,R))
B(L,R) = {x ∈ R2 | d(x ,L) = d(x ,R)}

∀e ∈ B(L,R) belongs to B(l , r), l ∈ L and r ∈ R

V (S)

B(L,R)

l

rB(l, r)

If We Have the Merge Chain...

Compute V (S)
Remove the part of V (L) right to B(L,R)
Remove the part of V (R) left to B(L,R)
Glue the two remaining parts

B(L,R) is a part of V (S)

V (S)

B(L,R)

l r

If We Have the Merge Chain...

Compute V (S)
Remove the part of V (L) right to B(L,R)
Remove the part of V (R) left to B(L,R)
Glue the two remaining parts

B(L,R) is a part of V (S)

V (L)

B(L,R)

If We Have the Merge Chain...

Compute V (S)
Remove the part of V (L) right to B(L,R)
Remove the part of V (R) left to B(L,R)
Glue the two remaining parts

B(L,R) is a part of V (S)

V (L)

B(L,R)

If We Have the Merge Chain...

Compute V (S)
Remove the part of V (L) right to B(L,R)
Remove the part of V (R) left to B(L,R)
Glue the two remaining parts

B(L,R) is a part of V (S)

B(L,R)

V (R)

If We Have the Merge Chain...

Compute V (S)
Remove the part of V (L) right to B(L,R)
Remove the part of V (R) left to B(L,R)
Glue the two remaining parts

B(L,R) is a part of V (S)

B(L,R)

l r

V (R)

If We Have the Merge Chain...

Compute V (S)
Remove the part of V (L) right to B(L,R)
Remove the part of V (R) left to B(L,R)
Glue the two remaining parts

B(L,R) is a part of V (S)

V (S)

B(L,R)

l

If We Have the Merge Chain...

Compute V (S)
Remove the part of V (L) right to B(L,R)
Remove the part of V (R) left to B(L,R)
Glue the two remaining parts

B(L,R) is a part of V (S)

V (S)

B(L,R)

l

B(L,R) is y -monotone

Lemma
B(L,R) is y -monotone

Let b be an edge of B(L,R).
b belongs to V (l ,S) and V (r ,S), l ∈ L and r ∈ R
Let b be directed such that l in the left of b
x-coordinate of l < x-coordinate of r
→ b must be upward

B(L,R) is y -monotone

Lemma
B(L,R) is y -monotone

Let b be an edge of B(L,R).
b belongs to V (l ,S) and V (r ,S), l ∈ L and r ∈ R
Let b be directed such that l in the left of b
x-coordinate of l < x-coordinate of r
→ b must be upward

Computing B(L,R)

Find the bottom edge e of B(L,R) as a starting edge
e is unbounded and extends to −∞

Trace out B(L,R) from e

Finding a starting edge of B(L,R)

An unbounded Voronoi edge corresponds to an edge of
the convex hull conv(S) of S

Build conv(L) and conv(R)

V (L) and V (R) are known.

Compute a tangent edge lr between conv(L) and conv(R)
B(l , r) is the starting edge

O(|L|+ |R|) time

L R

Finding a starting edge of B(L,R)

An unbounded Voronoi edge corresponds to an edge of
the convex hull conv(S) of S

Build conv(L) and conv(R)
V (L) and V (R) are known.

Compute a tangent edge lr between conv(L) and conv(R)
B(l , r) is the starting edge

O(|L|+ |R|) time

L R

Finding a starting edge of B(L,R)

An unbounded Voronoi edge corresponds to an edge of
the convex hull conv(S) of S

Build conv(L) and conv(R)
V (L) and V (R) are known.

Compute a tangent edge lr between conv(L) and conv(R)

B(l , r) is the starting edge
O(|L|+ |R|) time

L R

l
r

Finding a starting edge of B(L,R)

An unbounded Voronoi edge corresponds to an edge of
the convex hull conv(S) of S

Build conv(L) and conv(R)
V (L) and V (R) are known.

Compute a tangent edge lr between conv(L) and conv(R)
B(l , r) is the starting edge

O(|L|+ |R|) time

L R

l
rB(l, r)

Finding a starting edge of B(L,R)

An unbounded Voronoi edge corresponds to an edge of
the convex hull conv(S) of S

Build conv(L) and conv(R)
V (L) and V (R) are known.

Compute a tangent edge lr between conv(L) and conv(R)
B(l , r) is the starting edge

O(|L|+ |R|) time

L R

l
rB(l, r)

Trace B(L,R) in V (l ,L) (1)

B(L,R) ∩ V (l ,L)
B(L,R) enters V (l ,L) at v along B(l , r1)

Counterclockwise along ∂V (l ,L) from v to find
vL,1 ∈ B(l , r1)

After vL,1, V (l , L)→ V (l ′, L), and B(l , r1)→ B(l ′, r1)
Clockwise along ∂V (r1,R) to find vR,1 ∈ B(l , r1)

After vR,1, V (r1,R)→ V (r2,R), and B(l , r1)→ B(l , r2)

vR,1 earlier than vL,1, and B(l , r1)→ B(l , r2) at vR,1

l

Trace B(L,R) in V (l ,L) (1)

B(L,R) ∩ V (l ,L)
B(L,R) enters V (l ,L) at v along B(l , r1)

Counterclockwise along ∂V (l ,L) from v to find
vL,1 ∈ B(l , r1)

After vL,1, V (l , L)→ V (l ′, L), and B(l , r1)→ B(l ′, r1)
Clockwise along ∂V (r1,R) to find vR,1 ∈ B(l , r1)

After vR,1, V (r1,R)→ V (r2,R), and B(l , r1)→ B(l , r2)

vR,1 earlier than vL,1, and B(l , r1)→ B(l , r2) at vR,1

l

Trace B(L,R) in V (l ,L) (1)

B(L,R) ∩ V (l ,L)
B(L,R) enters V (l ,L) at v along B(l , r1)

Counterclockwise along ∂V (l ,L) from v to find
vL,1 ∈ B(l , r1)

After vL,1, V (l , L)→ V (l ′, L), and B(l , r1)→ B(l ′, r1)
Clockwise along ∂V (r1,R) to find vR,1 ∈ B(l , r1)

After vR,1, V (r1,R)→ V (r2,R), and B(l , r1)→ B(l , r2)

vR,1 earlier than vL,1, and B(l , r1)→ B(l , r2) at vR,1

l

Trace B(L,R) in V (l ,L) (1)

B(L,R) ∩ V (l ,L)
B(L,R) enters V (l ,L) at v along B(l , r1)

Counterclockwise along ∂V (l ,L) from v to find
vL,1 ∈ B(l , r1)

After vL,1, V (l , L)→ V (l ′, L), and B(l , r1)→ B(l ′, r1)
Clockwise along ∂V (r1,R) to find vR,1 ∈ B(l , r1)

After vR,1, V (r1,R)→ V (r2,R), and B(l , r1)→ B(l , r2)

vR,1 earlier than vL,1, and B(l , r1)→ B(l , r2) at vR,1

l

r1

r2

r3

v

b1

B(l, r1)

Trace B(L,R) in V (l ,L) (1)

B(L,R) ∩ V (l ,L)
B(L,R) enters V (l ,L) at v along B(l , r1)
Counterclockwise along ∂V (l ,L) from v to find
vL,1 ∈ B(l , r1)

After vL,1, V (l , L)→ V (l ′, L), and B(l , r1)→ B(l ′, r1)

Clockwise along ∂V (r1,R) to find vR,1 ∈ B(l , r1)
After vR,1, V (r1,R)→ V (r2,R), and B(l , r1)→ B(l , r2)

vR,1 earlier than vL,1, and B(l , r1)→ B(l , r2) at vR,1

l

r1

r2

r3

b1
v

vL,1

B(l, r1)

Trace B(L,R) in V (l ,L) (1)

B(L,R) ∩ V (l ,L)
B(L,R) enters V (l ,L) at v along B(l , r1)
Counterclockwise along ∂V (l ,L) from v to find
vL,1 ∈ B(l , r1)

After vL,1, V (l , L)→ V (l ′, L), and B(l , r1)→ B(l ′, r1)
Clockwise along ∂V (r1,R) to find vR,1 ∈ B(l , r1)

After vR,1, V (r1,R)→ V (r2,R), and B(l , r1)→ B(l , r2)

vR,1 earlier than vL,1, and B(l , r1)→ B(l , r2) at vR,1

l

r1

r2

r3

b1
v

vL,1
vR,1

B(l, r1)

Trace B(L,R) in V (l ,L) (1)

B(L,R) ∩ V (l ,L)
B(L,R) enters V (l ,L) at v along B(l , r1)
Counterclockwise along ∂V (l ,L) from v to find
vL,1 ∈ B(l , r1)

After vL,1, V (l , L)→ V (l ′, L), and B(l , r1)→ B(l ′, r1)
Clockwise along ∂V (r1,R) to find vR,1 ∈ B(l , r1)

After vR,1, V (r1,R)→ V (r2,R), and B(l , r1)→ B(l , r2)

vR,1 earlier than vL,1, and B(l , r1)→ B(l , r2) at vR,1

l

r1

r2

r3

b1
v

vL,1
vR,1

B(l, r1)

Trace B(L,R) in V (l ,L) (2)

B(L,R) ∩ V (l ,L)
B(L,R) from vR,1 along B(l , r2)

Counterclockwise along ∂V (l ,L) from vL,1 to find
vL,2 ∈ B(l , r2)

After vL,2, V (l , L)→ V (l ′, L), and B(l , r2)→ B(l ′, r2)
Clockwise along ∂V (r2,R) from vR,1 to find vR,2 ∈ B(l , r2)

After vR,2, V (r2,R)→ V (r3,R), and B(l , r2)→ B(l , r3)

vR,2 earlier than vL,2, and B(l , r2)→ B(l , r3) at vR,2

l

r1

r2

r3

b1
v

vL,1
vR,1

b2

B(l, r2)

Trace B(L,R) in V (l ,L) (2)

B(L,R) ∩ V (l ,L)
B(L,R) from vR,1 along B(l , r2)
Counterclockwise along ∂V (l ,L) from vL,1 to find
vL,2 ∈ B(l , r2)

After vL,2, V (l , L)→ V (l ′, L), and B(l , r2)→ B(l ′, r2)

Clockwise along ∂V (r2,R) from vR,1 to find vR,2 ∈ B(l , r2)
After vR,2, V (r2,R)→ V (r3,R), and B(l , r2)→ B(l , r3)

vR,2 earlier than vL,2, and B(l , r2)→ B(l , r3) at vR,2

l

r1

r2

r3

b1
v

vL,1
vR,1

b2

B(l, r2)
vL,2

Trace B(L,R) in V (l ,L) (2)

B(L,R) ∩ V (l ,L)
B(L,R) from vR,1 along B(l , r2)
Counterclockwise along ∂V (l ,L) from vL,1 to find
vL,2 ∈ B(l , r2)

After vL,2, V (l , L)→ V (l ′, L), and B(l , r2)→ B(l ′, r2)
Clockwise along ∂V (r2,R) from vR,1 to find vR,2 ∈ B(l , r2)

After vR,2, V (r2,R)→ V (r3,R), and B(l , r2)→ B(l , r3)

vR,2 earlier than vL,2, and B(l , r2)→ B(l , r3) at vR,2

l

r1

r2

r3

b1
v

vL,1
vR,1

b2

B(l, r2)
vL,2

vR,2

Trace B(L,R) in V (l ,L) (2)

B(L,R) ∩ V (l ,L)
B(L,R) from vR,1 along B(l , r2)
Counterclockwise along ∂V (l ,L) from vL,1 to find
vL,2 ∈ B(l , r2)

After vL,2, V (l , L)→ V (l ′, L), and B(l , r2)→ B(l ′, r2)
Clockwise along ∂V (r2,R) from vR,1 to find vR,2 ∈ B(l , r2)

After vR,2, V (r2,R)→ V (r3,R), and B(l , r2)→ B(l , r3)

vR,2 earlier than vL,2, and B(l , r2)→ B(l , r3) at vR,2

l

r1

r2

r3

b1
v

vL,1
vR,1

b2

B(l, r2)
vL,2

vR,2

Trace B(L,R) in V (l ,L) (3)

B(L,R) ∩ V (l ,L)
B(L,R) from vR,2 along B(l , r3)

Counterclockwise along ∂V (l ,L) from vL,2 to find
vL,3 ∈ B(l , r3)

After vL,3, V (l , L)→ V (l ′′, L), and B(l , r3)→ B(l ′′, r3)
Clockwise along ∂V (r3,R) from vR,2 to find vR,3 ∈ B(l , r3)

No vR,3

B(l , r3)→ B(l ′′, r3) at vL,3

l

r1

r2

r3

b1
v

vL,1
vR,1

b2

B(l, r3)

vL,2

vR,2
b3

vL,3

Trace B(L,R) in V (l ,L) (3)

B(L,R) ∩ V (l ,L)
B(L,R) from vR,2 along B(l , r3)
Counterclockwise along ∂V (l ,L) from vL,2 to find
vL,3 ∈ B(l , r3)

After vL,3, V (l , L)→ V (l ′′, L), and B(l , r3)→ B(l ′′, r3)

Clockwise along ∂V (r3,R) from vR,2 to find vR,3 ∈ B(l , r3)
No vR,3

B(l , r3)→ B(l ′′, r3) at vL,3

l

r1

r2

r3

b1
v

vL,1
vR,1

b2

B(l, r3)

vL,2

vR,2
b3

vL,3

Trace B(L,R) in V (l ,L) (3)

B(L,R) ∩ V (l ,L)
B(L,R) from vR,2 along B(l , r3)
Counterclockwise along ∂V (l ,L) from vL,2 to find
vL,3 ∈ B(l , r3)

After vL,3, V (l , L)→ V (l ′′, L), and B(l , r3)→ B(l ′′, r3)
Clockwise along ∂V (r3,R) from vR,2 to find vR,3 ∈ B(l , r3)

No vR,3

B(l , r3)→ B(l ′′, r3) at vL,3

l

r1

r2

r3

b1
v

vL,1
vR,1

b2

B(l, r3)

vL,2

vR,2
b3

vL,3

Trace B(L,R) in V (l ,L) (3)

B(L,R) ∩ V (l ,L)
B(L,R) from vR,2 along B(l , r3)
Counterclockwise along ∂V (l ,L) from vL,2 to find
vL,3 ∈ B(l , r3)

After vL,3, V (l , L)→ V (l ′′, L), and B(l , r3)→ B(l ′′, r3)
Clockwise along ∂V (r3,R) from vR,2 to find vR,3 ∈ B(l , r3)

No vR,3

B(l , r3)→ B(l ′′, r3) at vL,3

l

r1

r2

r3

b1
v

vL,1
vR,1

b2

B(l, r3)

vL,2

vR,2
b3

vL,3

Trace B(L,R) in V (l ,L) (3)

B(L,R) ∩ V (l ,L)
B(L,R) from vR,2 along B(l , r3)
Counterclockwise along ∂V (l ,L) from vL,2 to find
vL,3 ∈ B(l , r3)

After vL,3, V (l , L)→ V (l ′′, L), and B(l , r3)→ B(l ′′, r3)
Clockwise along ∂V (r3,R) from vR,2 to find vR,3 ∈ B(l , r3)

No vR,3

B(l , r3)→ B(l ′′, r3) at vL,3

l

r1

r2

r3

b1
v

vR,1

b2

vR,2
b3

vL,3

Time to Compute B(L,R)

Lemma
Computing B(L,R) takes O(|L|+ |R|) = O(|S|) time

Finding the starting edge takes O(|L|+ |R|) time
Traversing V (L) takes O(|V (L)|) time (V (R)→ O(|V (R)|))

Enter each V (l ,L) and its boundary at most once
There are O(|B(L,R)|) intersections

Each edge of B(L,R) makes two intersections.

O(|L|+ |R|) + O(|V (L)|) + O(|V (R)|) + O(|B(L,R)|)
= O(|L|+ |R|+ |L|+ |L|+ |S|) = O(|S|)

O(|V (L)|) = O(|L|), O(|V (R)|) = O(|R|), and
O(|B(L,R)|) = O(|S|)

Time Complexity

Theorem
The divide-and-conquer algorithm computes V (S) in O(n log n)
time

Sorting takes O(n log n) time (only do once)
A sub-instance S′ ⊂ S takes O(|S′|) time

Partitioning S′ into L′ and R′ takes O(|S′|) time
Computing B(L′,R′) takes O(|S′|) time

The i th-level takes O(2i)×O(n/2i) = O(n) time
O(2i) sub-instances each with O(n/2i) sites

O(log n) levels

T (n) = O(n) + 2 · T (n/2) => T (n) = O(n log n)

Time Complexity

Theorem
The divide-and-conquer algorithm computes V (S) in O(n log n)
time

Sorting takes O(n log n) time (only do once)
A sub-instance S′ ⊂ S takes O(|S′|) time

Partitioning S′ into L′ and R′ takes O(|S′|) time
Computing B(L′,R′) takes O(|S′|) time

The i th-level takes O(2i)×O(n/2i) = O(n) time
O(2i) sub-instances each with O(n/2i) sites

O(log n) levels
T (n) = O(n) + 2 · T (n/2) => T (n) = O(n log n)

