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Lemma 21 Any contiguous monotone strategy for T 0 can be translated to a contiguous mono-
tone strategy for T with the same number k of agents.

Proof. Let e0 = (x, y) and e00 = (y, z) be links stemming from the extension of a link e. If q
guards move from x to y or z to y, they stay in there place in T . If q guards move from y to x
or from y to z, they will move from z to x or from x to z in T , respectively. 2

The other way round, any strategy for T is also a strategy for T 0.

Lemma 22 Any contiguous monotone strategy for T with k agents can be translated to a con-
tiguous monotone strategy for T 0 with the same number k of agents.

Proof. A move along an edge e in T is splitted into two moves along e0 and e00 in T 0. If the move
clears e, then q � w(e) have traversed e. From the construction q searchers are also enough for
w(e) = w(e0) = w(e00) and the weight w(e) of the intermediate vertex. 2

We collect our results:

Proof of Theorem 17: From Lemma 21 we conclude cs(T 0)  cs(T ). From Lemma 18 we
obtain a connected crusade of frontier  cs(T ) in T 0. From Lemma 19 we conclude that there is a
progressive connected crusade of frontier  cs(T ) in T 0. From Lemma 20 we obtain a monotone
contiguous search strategy using  cs(T ) guards in T 0 and we can assume that all searchers are
initially at a single starting vertex v1. From Lemma 22 we conclude that there is also an optimal
monotone contiguous search strategy that starts with all guards in a single vertex.

2.2.5 Designing a monotone strategy for unit weights

By Theorem 17 we can start strategy from a single vertex v and we can consider monotone
strategies. Therefore, we design an optimal strategy for any starting vertex v and for the rooted
tree T

v

we compute the minimum number, cs(T
v

), of agents required for starting in v. Finally
we have cs(T ) = min

v2T cs(T
v

).

An optimal monotone strategy for computing, cs(T
v

), will also give an ordering all vertices z of
T
v

, stating which subtree, say T
v

(z), of T
v

w.r.t. root v is fully cleared first. For this we can
also consider the subtree T

v

(z) alone with root z and ask for cs(T
v

(z)) for short and an optimal
monotone strategy.

We denote the children of the vertex z of the subtree T
v

(z) of T
v

by z1, . . . , z
d

w.r.t. the order
cs(T

v

(z
i

)) � cs(T
v

(z
i+1)) for i = 1, . . . , d� 1. An example is given in Figure 2.11. Now, we can

prove the main structural result. Unfortunately, there is a flaw in the proof of Barrière at al.
and we can only proof the statement for unit weighted trees. The flaw is precisely marked in
the proof below.

Lemma 23 Let z1, . . . , z
d

be the d � 2 children of a vertex z in T
v

and assume that cs(T
v

(z
i

)) �
cs(T

v

(z
i+1)) for i = 1, . . . , d� 1. We have

cs(T
v

(z)) = max{cs(T
v

(z1)), cs(Tv

(z2)) + w(z)} (2.5)

it the tree T is a tree with unit weights.

Proof. We can assume that cs(T
v

(z)) � cs(T
v

(z1)) holds because we have to clear T
v

(z1)
before clearing T

v

(z). If in Equation 2.5 cs(T
v

(z1) � cs(T
v

(z2) + w(z) holds, we can clear T
v

(z)
by setting w(z) on z and clear all T

v

(z
i

) by cs(T
v

(z1) agents but T
v

(z1) last. Note that also
w((z, z

i

))  w(z
i

)  cs(T
v

(z
i

) for all i for moving back from subtrees to z. Altogether, cs(T
v

(z1)
agents are required and they are su�cient.
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Figure 2.11: The rooted tree T
v

has two subtrees T
v

(z1) and T
v

(z2) at vertex z. We have
cs(T

v

(z1)) = 25 and cs(T
v

(z2) = 6 and cs(T
v

(z2)) + w(z) = 14 < 25 = cs(T
v

(z1)) which means
that cs(T

v

(z)) = 25 holds. We leave w(z) agents at z and clean T
v

(z2) first. In T
v

(z2) the same
situation occurs, here cs(T

v

(z01)) = 4 and cs(T
v

(z2)) = 1 but cs(T
v

(z02)) + w(z2) = 6 > 4 =
cs(T

v

(z01). Therefore we require cs(T
v

(z02)) + w(z2) = 6 agents, first we clean T
v

(z02) by 1 agent
and block z2 by 5 agents. Then we clean T

v

(z01) by 6 agents.

So let us assume that in Equation 2.5 cs(T
v

(z1)) < cs(T
v

(z2)) + w(z) holds. We would like to
prove that cs(T

v

(z2)) + w(z)� 1 agents are not su�cient. We consider two cases:

1. T
v

(z2) is cleared before T
v

(z1): While cs(T
v

(z2)) agents clear Tv

(z2) there are only w(z)�
1 = 0 agents left for blocking a vertex in T

v

(z1). Recontamination!

2. T
v

(z1) is cleared before T
v

(z2)): While cs(T
v

(z1)) agents clear T
v

(z1) there are no more
than w(z) � 1 = 0 agents left for blocking a vertex in T

v

(z2) (because cs(T
v

(z1)) =
cs(T

v

(z2))). Recontamination!

The above statement do not hold for general weighted trees, because the fact that one only
partially decontaminates T

v

(z2) or Tv

(z1) is not taken into account. For example, consider the
vertex, say v with weight 5 in the center of Figure 2.12. and let z1, z2, and z3 be the children of
v below v from right to left. We have max{cs(T

x

(z1)), cs(Tx

(z2)) +w(z)} = max{8, 7 + 5} = 12
but we can recontaminate the subtree by 10 agents only, if we first clean z3, leaving 5 agent at
v. Then only clean vertex z2 with one agent and leave this agent there. Then we clean T

x

(z1)
with the remaining 9 agents, and finally return to z3 for the last part.

So cs(T
v

(z2)) + w(z) are required and are also su�cient by occupying z with w(z) and clearing
all T

v

(z
i

) by cs(T
v

(z2)) agents but T
v

(z1) last with cs(T
v

(z2)) + w(z) agents. Note that also
w((z, z

i

))  w(z
i

)  cs(T
v

(z
i

)) for all i for moving back from subtrees to z. 2

The consequence of the above Lemma is, that we can compute cs(T
v

) in O(n) time by recursively
applying Equation 2.5. Alternatively, we can start from the vertices.

Exercise 13 Compute cs(T
v4) for the tree in Figure 2.5 by the above recursive process.

Corollary 24 For a unit weighted tree T of size n and for a given starting vertex v we can
compute the optimal monotone contiguous strategy starting at v in O(n) time. An overall optimal
contiguous strategy can be computed in O(n2).
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Figure 2.12: The flaw in the prove of Barriére et al. The recursion cs(T
v

(z)) =
max{cs(T

v

(z1)), cs(Tv

(z2)) + w(z)} does not hold for arbitrary weighted trees.

2.2.6 Computing an optimal contiguous Intruder Search Strategy for unit

weights

We consider a message based algorithm that compute the optimal number of agents required
for any starting vertex v.

The following local recursive labeling �
x

(e) for the links e = (x, y) adjacent to x will be su�cient.
Let e = (x, y) be a link incident to x.

1. If y is a leaf, set �
x

(e) = w(y).

2. Otherwise, let d be the degree of y and let x1, . . . , x
d�1 be the incident vertices of y di↵erent

form x. Let �
y

(y, x
i

) =: l
i

and l
i

� l
i+1. Then,

�
x

(e) := max{l1, l2 + w(y)} .

For any link e = (x, y) we will have two labels �
x

(e) and �
y

(e). By a messages sending technique,
we can compute the labels �

x

(e) and �
y

(e) for alle edges e = (x, y) in overall linear time. Note
that we interpret any link e = (x, y) as undirected, which means that (x, y) = (y, x) = e, more
formally we could have used a notion e = {x, y}.
The message sending algorithm works as follows:

1. Start with the leaves and for any leaf y and for e = (x, y) send a message l = w(y) to x.
After receiving this messages, x sets �

x

(e) = l.

2. Consider a vertex y of degree d that has received at least d�1 messages l
i

from the incident
certices x1, . . . , x

d�1 and let x be the remaining incident vertex. Let l
i

� l
i+1. Send a

message l = max{l1, l2 + w(y)} to x, after receiving the message x, set �
x

((x, y)) = l.

The above process can be applied sequentially, starting from the leaves. The process will not
stop until we have send a message from x to y and y to x along any edge e = (x, y). The process
ends and in total O(n) messages have been transmitted. An example is given in Figure 2.13.
Keep in mind that we set �

x

(e) meaning that x has received a message from e.
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Figure 2.13: The message sending algorithm can easily work sequentially.

Lemma 25 The links of a tree T can be labeled with labels �
x

by the above message sending
algorithm by O(n) messages in total.

Finally, we would like to prove that for an edge e = (x, y) the labeling algorithm indeed computes
cs(T

x

(y)) for the rooted tree T
x

and its direct neighbor y. Note, that we can only proof the
result for unit weighted trees.

Lemma 26 For a unit weighted tree T = (V,E) and an edge e = (x, y) 2 E we have cs(T
x

(y)) =
�
x

(e).

Proof. The proof goes by induction on the height h(y) of T
x

(y). If y is a leaf we have �
x

(e) =
w(y) for h(y) = 0. The statement holds.

Assume that the statement holds for 0  h(y) < k and consider h(y) = k. For edge e = (x, y) let
x1, . . . , x

d

be the d � 1 be the children of y in T
x

(y) and assume that �
y

((y, x
i

)) � �
y

((y, x
i+1))

holds for i = 1, . . . , d�1. We also have T
y

(x
i

) = �
y

((y, x
i

) by induction hypothesis and T
y

(x
i

) =
T
x

(x
i

) by definition. Therefore we also have cs(T
x

(x
i

)) � cs(T
x

(x
i+1)) for i = 1, . . . , d� 1.

In Lemma 23 the recursion Equation 2.5 for T
x

(y) is exactly the same as step 2. �
x

((x, y)) for
in the labeling process 2.2.6.

Therefore, we conclude cs(T
x

(y)) = �
x

(y). 2

Finally, we have to compute the optimal number of agents and also a corresponding strategy.
The first part can done as follows. We compute the minimum number of agents, µ(v) required
for starting at a vertex v in the tree T .

For this we order all �
v

((v, x
i

) for all i = 1, . . . , d incident edges (v, x
i

) so that �
v

((v, x
i

)) �
�
v

((v, x
i+1)) and compute

µ(v) = max{�
v

((v, x1)),�v

((v, x2)) + w(v)} . (2.6)

See for example the computation of µ(v3) and µ(v5) in Figure 2.14.
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Figure 2.14: Computing µ(v) = max{�
v

((v, x1)),�v

((v, x2)) + w(v)} and the minimal
min

v2V µ(v) = cs(T ) gives an optimal strategy at least for unit weighted trees.

Altogether, we have µ(v) = cs(T
v

) and min
v2V µ(v) = cs(T ). For the movements of the agents

we choose the vertex v that attains a minimum µ(v) and apply a strategy as induced by the
values �

y

. We traverse T
v

in increasing order of the values �
y

.

For example, in Figure 2.14 µ(v5) = 10 gives the minimal number of agents required and we
start with 10 agents in v4 w.r.t. decreasing numbers �

v5 . Thus, first 1 agenst move along e6
and back to v5, then 4 agents move along e5 and back to v5. After that 10 agents move along
e4 and so on.

Theorem 27 On optimal contiguous strategy for a unit weighted tree T = (V,E) can be com-
puted in O(n) time and space.

Proof. The number of message required is given by the above considerations. For calculating
the messages (and also the values µ(x)) afterwards, we only have to register the greatest three
entries �

v

(e) for any v. This can be done successively. For any new message we can adjust the
greatest three entries in constant time. 2

2.2.7 Lower and upper bound for the contiguous search

For a given tree, T
n

with n nodes we are asking for the max
n

cs(T
n

) =: cs(n). For convenience
we consider the unit weighted case, where all weights are equal to 1. We will prove the following
Theorem.

Theorem 28 For unit weights and for any number of vertices n, we have blog2 nc�1  cs(n) 
blog2 nc.

We prove each inequality of the Theorem separately by the following lemmata:
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Lemma 29 For every n � 1 we find trees T
n

with cs(T
n

) � blog2(23(n+ 1))c � blog2 nc � 1.

Proof. We consider a rooted tree T with root r and for any vertex u let the level of u denote
the distance from r to u. If n equals 2k � 1 we choose a complete binary tree and show that
cs(T

n

) = k�1 = log2(n+1)�1 � log2b(23(n+1))c agents are required by considering the values
�
v

(e). See also Figue 2.15.

• We have �
v

((v, u)) = k � i and �
u

((v, u) = k � 1, for any vertex u of level i > 0 and its
parent node v w.r.t. r. This can be easily seen by induction. The last value stem from
the fact that we have to clean a complete tree with 2k�1 � 1 vertices by starting from the
root node.

• We have µ(u) = k � 1 for any u 6= r and µ(r) = k, which gives the bound.

Now, for n 6= 2k � 1 consider the binary representation n =
P

r

i=1 2
↵i with ↵1 > ↵2 > · · · > ↵

r

.
For example consider n = 11010 in binary representation with ↵1 = 4,↵2 = 3, ↵3 = 2. We build
a chain with vertices x1, x2, . . . , xr and for any x

i

we build an edge to a complete binary tree
T
↵i of size 2↵i � 1 as depicted in Figue 2.16.

This means that we have n vertices in total. We conclude that ↵1 agents are required. This
holds if we start somewhere outside T

↵1 because we visit the root of T
↵1 at some point. If we

start inside T
↵1 (for example in a leaf) we require ↵1 � 1 agents for T

↵1 at most but at the
root node y

i

of T
↵1 we can assume that we have to place an additional agent that blocks the

recontamination from x1.

For this we assume that we require at least ↵1 � 1 = �
y1((y1, x1)). In our example this is the

case because cleaning T
↵2 from the root requires ↵2 = ↵1 � 1 agent. ( If this is not the case

↵1 � 1 agents are enough in total, but also n is small enough in this case so that we can also
conclude ↵1 � 1 � blog2(23(n+ 1))c which is an Exercise for the cases ↵2  ↵1 � 2 ).

Altogether in the above case, we have 2↵1 � 1 < n < 2↵1+1 � 1 and require cs(T
n

) = ↵1 �
log2(n+ 1)� 1 � log2b(23(n+ 1))c agents in total which gives the conclusion. 2
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Exercise 14 Discuss the remaining case in the above proof. That is ↵2 < ↵1 + 1. Consider
↵2 = ↵1 + 2 and ↵2 < ↵1 + 2 separately.

On the other hand we show that blog2 nc agents are always su�cient.

Lemma 30 For every n � 1 and unit weights, blog2 nc agents are su�cient for a contiguous
search strategy.

Proof. We consider a tree T
r

with n vertices and µ(r) = cs(T ). Now we simplify this so that
it becomes a complete binary tree T 0

r

w.r.t. r with cs(T
r

) = cs(T 0
r

) by the following rules, which
will be applied until none of them is applicable any more. The children/parent relation in the
tree is considered w.r.t. r.

1. For a node x and its d > 2 children x1, x2, . . . , x
d

ordered by cs(T
r

(x
i

)) � cs(T
r

(x
i+1))

remove all T
r

(x
i

) for i > 2.

2. For a node x with two children x1 and x2 and cs(T
r

(x1)) > cs(T
r

(x2)), remove T
r

(x2).

3. For a node x 6= r with only one child x1, remove x and connect x1 to the parent of x.

4. If there are more than two vertices left, and r has only one child x1, remove x1 and connect
the children of x1 to r.

First, the number of agents required for T 0
r

and T
r

are the same, because the computation of µ(r)
in T

r

makes use of eaxctly the same values. Note that the weights of the vertices are restricted
to one, therefore rule 2. is also correct by cs(T

r

(x1)) � cs(T
r

(x2)) + 1. Cancelling a vertex with
one child has no influence.
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Second, we show that T 0
r

is a complete binary tree rooted in r. The first rule and the second
rule returns a tree that has internal nodes with at most 2 children. Rule three deletes internal
nodes with one child except for the root. Rule 4 make the root have 2 or 0 children.

Thus, we have a binary tree whose internal nodes have degree excactly 2. Finally, we show that
the tree is complete. Let x be a node such that the subtree T 0

x

at x is not complete and there
is no other subtree in T 0

x

with this property. This means that the children x1 and x2 of x in T 0
r

define complete subtree T 0
x1

and T 0
x2

of di↵erent size. Thus, rule 2 can be applied which gives a
contradiction. 2
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