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Chapter 6

Escape Paths for the Intruder

In this chapter we would like to discuss a reverse situation. An intruder tries to escape from
an environment as soon as possible. This work is inspired by the famous question of Bellman
(brought up in 1956) who asked for the shortest escape path from an unknown forest.

As before we would like to consider geometric variants as well as more discrete situations. Again,
the problem statement can be considered to be a game. The intruder has some abilities and tries
to escape from the environment quickly whereas the adversary can manipulate the environment
so that the intruder leaves the environment very late. We are looking for apropriate escape
strategies for the intruder and consider di↵erent performance measures.

6.1 Lost in a forest

Assume that a simple region R in the plane is given which boundary is formally defined by a
closed Jordan curve B that divides the plane in two simply connected regions. The intruder
is located inside R and tries to find the boundary B as soon as possible by a deterministic
escape path in the plane. We assume that the intruder has no sight system and only detects the
boundary by touching it. The starting position p inside R and the rotation of R is unknown for
the intruder but the exact shape of R is known. For example, somebody is located inside a dark
forest of known shape and tries to get out of the forest as soon as possible. The deterministic
escape path ⇧ has to lead out of the region R for any starting position p 2 R and any rotation
of R around p.

The performance measure for the path ⇧ is simply its length. There will be a worst case starting
position p of ⇧ and a worst case rotation of R so that for p the full path length of ⇧ is required
to hit the boundary B. If no such point exists, there will be a better path ⇧ of shorter length.

Considering such escape paths has a long tradition as mentioned above. Unfortunately, the
optimal escape paths is only known for some very special shapes and totally unknown for general
(polygonal) environments. We first discuss some simple convex situations where the diameter is
optimal.

Conversely, the problem can also be considered as a covering problem. Consider the class CL of
rectifiable curves in the plane of some lenght L. Find an environment R of small size that can
be rotated and translated so that it covers any curve of CL. In the literature for L = 1 such
covers are also denoted as worm covers. So we are searching for environments that are worm
covers and but at least one worm finally touches the boundary from any starting situation.
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Figure 6.1: A cirlce of radius r covers any path of lenght < 2r. The diameter is a shortest escape
path.

6.1.1 Simple examples and the diameter path

Let us assume that R is a circle of radius r.

Theorem 69 The shortest escape path from a circle R of radius r is given by the diameter
segment of R. Conversely, a circle of radius 1

2

is a worm cover.

Proof. Let us assume that the optimal escaps path ⇧ of lenght L is given. We consider the
point C on L that splits ⇧ into two parts of lenght L/2. Let S denote the starting point of ⇧
and T denote its endpoint. Now place C to the center of the circle; see Figure 6.1. In order to
leave the circle at least S or T has to touch the boundary of R, thus |CT | � r or |CS| � r. on
the other hand the diameter d of R of lenght 2r is an escape path. 2

Interestingly, also the semicircle has the same escape path and a semicirlce of diameter 1 is also
a worm cover. The proof is a bit more complicated and was given by A. Meir and manifested
by Wetzel (1973).

Theorem 70 The shortest escape path of a semicircle R of radius r and diameter 2r is given
by the diameter. Conversely, a the semicircle of radius 1

2

is a worm cover.

Proof. Let us assume that the escape path is a path with start end endpoint S and T . We
rotate the path so that ST is in parallel with the base line Bl of the semicircle and we also
translate the segment (and the path) so that there is a single tangent point I on the base B
and all other points of the path ⇧ lie above Bl as depicted in Figure 6.2. Consider an arbitrary
point X 2 Pi, w.l.o.g. we assume that X lies inside the path from S to I. We also consider
the reflections of S0 and T 0 of S and T along the base line Bl. The segment ST 0 intersects the
base line at some point O. The length of the segment SX is shorter than ⇧X

S . By refelection
the length of the segment XT 0 is shorter than the path ⇧T

X .

Now we translate the construction so that O is the center of the semicircle. We would like to
argue that |XO|  r/2 holds. This means that any X is inside the semicircle which gives the
conclusion.

We consider the triangle SXT 0 where O divides ST 0 into two parts of the same length. By
geometry we know that the median XO is of the triangle is shorter that 1

2

the length of the
adjacent sites.

This means that

|XO|  1

2
(|XS|+ |XT 0|)  1

2
(⇧X

S +⇧T
X) < r .
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Figure 6.2: A semicirlce of radius r covers any path of lenght < 2r. The diameter is a shortest
escape path.

2

Exercise 31 Show that the median of the triangle is always shorter than the average (factor
1

2

) of the length of the adjacent sites.

Exercise 32 Show that the above Theorems also hold for closed paths. Note that we considered
open paths in the proofs above.

In general for a given region R the diameter d is defined to be the longest shortest path between
two points in R. The corresponding points are always located on the boundary of R (otherwise
there exist two points connected by a longer shortest path). For convex objects any diameter
(path) is always an escape path, it need not be an optimal escape path as we will see in the next
section. But for some convex objects R the diameter is indeed optimal as we will prove now.
Some fatness condition is required.

Exercise 33 Show that for non-convex polygonal objects the diameter need not be an escape
path. Can you define a path for any simple polygon, that is always an escape path?

First we consider the rhombus R of diameter L and angle ✓ = 60� as depicted in Figure 6.3.
We would like to show that any escape path has lenght at least L. As already mentioned the
diameter of lenght L is an escape path. The following proof stems from Poole and Gerriets
(1973).

Theorem 71 The optimal escape path for the rhombus R↵ of diameter L and angle ↵ = 60� is
given by its diameter.

Proof. As in the previous proofs we split an optimal escape path of some lenght L0 < L into two
halfs of lenght L0/2 and consider the mean point C. We let C slide along the shorter diagonal
BE as shown and rotate the path so that the path ⇧C

S is tangent to AB and the path ⇧T
C is

tangent to BD. Such a rotational center for C 2 BE and orientation of R always exists. (Note
that in an extreme case C could be located at B and only touches both AB and BD.) Let
X 2 AB and Y 2 BD denote the corresponding tangent points of ⇧C

S and ⇧T
C , respectively.
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Figure 6.3: The rhombus R↵ of diameter L and angle ↵ = 60�. The diameter is the shortest
escape path since |p

1

Y |+ |p
2

Y | equals L/2 for any point Y on BD.

(0, 0)
(x, 0)

↵0
= 30

�

L/2

L/2 tan↵

L1 : Y = tan↵0X

(x, x tan↵0
)

L/2� x

p1

p2

L2 : Y = � tan↵0X

x

Figure 6.4: Parameterization for the conclusion in Theorem 71. The distance from (x, x tan↵0)
on L

1

to p
1

on L
2

also equals x for ↵0 = 30�.

Because L0 is covered by R at least one path ⇧C
S or ⇧T

C has to hit the upper angle AED of R.
W.lo.g. assume that ⇧T

C hits AED. Consider the shortest path from Y to AED and to BE
which meet ED at p

1

and BE at p
2

by angle ⇡/2, respectively. This means that ⇧T
C cannot be

shorter than the sum of lenghts of p
1

Y and p
2

Y .

Finally, we show that |p
1

Y |+ |p
2

Y | equals L/2 for all Y 2 BD, which concludes the proof. This
holds by the geometric arguments shown in Figure 6.4. 2

Exercise 34 Is the shortest escape path always unique? Answer the question for convex and
non-convex regions R.

6.1.2 Besicovitch Zig-Zag path

Up to now all shortest escape paths where given by the diameter of the given convex object.
This is not always true as we will show by a family of isosceles triangles T↵ with base of length

b↵ =

r
1 +

1

9 tan2 ↵
.

as shown in Figure 6.5 for ↵ = 60� where T↵ is a unilateral triangle. We will finally show that we
can escape from the unilateral triangle of side-length 1 by a symmetric Zig-Zag path of lenghtq

27

28

< 1, although 1 is obviously its diameter.
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In general we consider ↵ to be in the interval from roughly 52.24� up to 60�. For ↵ > 60�

the base b↵ is no longer the largest segment (and not the diameter any more), the reason for
↵ � 52.24� is shown below. We show that for any T↵ the shortest symmetric Zig-Zag-Path is
an escape path for T↵ with path lenght smaller than b↵. More precisely, the shortest symmetric
Zig-Zag path will have lenght 1 and leaves T↵ from any starting point.

The following result goes back to Coulton and Movshovich (2006). First, we define a symmetric
Zig-Zag escape path. We orient T↵ so that the base b↵ runs in parallel to the X-axis and runs
from (0, 0) to (b↵, 0). The remaining segments l↵ and r↵ of T↵ run above the X-asis in parallel
along the lines L

1

: Y = tan↵X and L
2

: Y = tan↵(b�X), respectively as given in Figure 6.5.

The symmetric Zig-Zag consists of three consecutive segements of the same length and starts at
the origing of T↵. Any segment has the same altitude h w.r.t. the base b↵. The last segment
exactly touches the segment r of T↵. By construction any such path is an escape path for the
corresponding T↵.

Now, we would like to construct a Zig-Zag path of length 1 for any T↵ such that the path is the
shortest symmetric Zig-Zag for a corresponding b↵. Such a path is the shortest, if its straightened
path of the same length hits the line L : Y = 3 tan↵(b↵ � X) by a right angle as depicted in
Figure 6.5 i). By congruence as shown in Figure 6.5 ii) we conclude that 1

x = b↵
1

which gives

x = 1

b↵
. Finally we determine b↵ by y = tan↵

⇣
b↵ � 1

b↵

⌘
and x = b

1

and x3 + (3y)2 = 1 which

gives

b↵ =

r
1 +

1

9 tan2 ↵
.

For ↵ = 60� we have b↵ =
q

28

27

and we can escape from the equilateral triangle of side-length 1

by a symmetric Zig-Zag path of lenght
q

27

28

< 1, although 1 is obviously its diameter.

Exercise 35 Verify the above formulas b↵ =
q
1 + 1

9 tan

2 ↵
and b↵ =

q
28

27

for ↵ = 60�.

For small ↵ there might be other three-segment paths that also have distance 1 or even a shorter
distance. This can happen for example, if a line L

3

: Y = tan(2↵) runs in parallel with L
2

as

shown in Figure 6.6. This means �3 tan↵ = tan 2↵ or tan↵ =
q

5

3

. To avoid such situations

we require ↵ � ↵
0

where ↵
0

solves the equation.

Theorem 72 For any ↵ 2 [arctan(
q

5

3

), 60�] there is a symmetric Zig-Zag path of lenght 1 that

is an escape path of T↵ smaller than the diameter b↵.

Before we give a proof for the fact that the corresponding symmetric Zig-Zag escape paths are
indeed optimal escape paths for any T↵ we first introduce some other models and interpretations
of the problem.

6.2 Di↵erent models and cost measures

Up to now we have considered the case that the intruder tries to escape from a geometric
environment without any knowledge of its position. Let us assume that a bit more information
is given and let us also consider a somewhat more discrete version. The intruder starts at the
source of m long corridors, each of which finally lead out of the environment. The agent also
knows the depth si but not the correspondance to the corridors.
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O = (0, 0)

↵

b↵

L1 : Y = tan↵X

L2 : Y = tan↵ (b↵ �X)
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Figure 6.5: i) Any symmetric Zig-Zag path for T↵ is an escape path. For the shortest such path
the straightened segment mets the line L : Y = 3 tan↵(b↵ �X) by a right angle. ii) Using the
congruent triangles OPQ and OPV we have 1

x = b
1

.

O = (0, 0)
b↵

L3 : Y = tan 2↵X

(b, 0) = V

(x, y)

P = (x, 3y)

1

Q = (x, 0)

L : Y = 3 tan↵ (b↵ �X)

l↵

r↵

↵↵

L0
3

Figure 6.6: If ↵ is too small, other Zig-Zag path might have a better performance (lenght  1).
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Consider the situation where a set Lm of m line segments si of unknown length |si| (which
might represent dark corridors) are given and an agent has to find the end of only one arbitrary
corridor as depicted in Figure 6.7(i). Just choosing a single corridor and move to its end might
be very bad, if it is unfortunately the largest corridor. So in this escape problem the agent will
move into one corridor sj1 up to a certain distance x

1

and then check another corridor sj2 for
another distance x

2

and so on. Finally he will hit the end of one of the corridors with hopefully
overall short path length.
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Figure 6.7: (i) Online searching for the end of one segment (or digging for oil) form = 7 segments
of unknown length as considered by Kirkpatrick. A reasonable strategy changes successively
from one segment to the other with distances xi on sji . It is allowed to resume searching at the
previous end-point with no extra cost (see x

2

and x
4

on sj2 = sj4 = s
5

). The strategy reaches
the end of segment s

5

after 5 movements (x
1

, . . . , x
5

). If at least the distance distribution is
known, the problem is easier to solve. There are two extreme cases. (ii) If all segments have
almost have the same length, it is reasonable to move along an arbitrary segment with largest
distance, this is almost optimal. (iii) If there is one segment of very short length and all other
segments are very long, one will find the end of the short segment by checking all segments with
the shortest distance. This path is also short. (iv) In general the discrete certificate is defined
for the given distance distribution. If f

1

� f
2

� · · · � fm is the order of the length of the
segments, it is always su�cient to check i arbitrary segments with length fi and mini i · fi is the
best such strategy.

Kirkpatrick (2009) introduced this problem and also motivates the situation by the scenario of
digging for oil at m locations si where the distance |si| to the source of the oil of place si is not
known. It is su�cient to get to the source of one place and the overall e↵ort should be small. In
this scenario it is allowed to resume the movement (or digging) for a location si at the endpoint
where si was left at the previous visit; see Figure 6.7(i). There are no extra costs for moving to
the previously reached depth at si.

Now we define a performance measure. Let us assume that all m distances |si| are known but
not the correspondence to the places si. In this case we can sort the m distances and obtain a
discrete distance distribution of the length of the segments.

First, consider the extreme situations in Figure 6.7(ii) and (iii) If all segments si almost have
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the same length, a successful strategy will simply use the maximal length x among all segments,
checks this for an arbitrary segment and will succeed with path length x in the worst case;
Figure 6.7(ii). If on the other extreme (see Figure 6.7(iii)) the distance to a single source is
small but the distances are very large to all others (and we only know this distribution), the
best option is to check all segments successively by the small distance x. This gives an e↵ort of
at most x ·m in the worst case when the small segment is found at the latest visit.

In general Kirkpartrick defines a certificate that takes the distance distribution into account.
The segments are sorted by distance si. Let fj with j = 1, . . . ,m denote the sorted list of the
lengths of the segments with decreasing distances fj as shown in Figure 6.7(iv). Now for distance
fi there are exact i segments that are larger than or equal to fi. Thus, after checking arbitrary
i segments sj with distance fi it is clear that we will find the end of at least one segment. In
the worst case the i largest segments have been checked including fi. We summarize the above
ideas in the following Theorem.

For a set Lm of m line segments si and a set of Fm of m length fj , there is a permutation
⇡ so that |si| = f⇡(i) holds. Only Lm and Fm are given, the permutation is unknown. The
agent can make use of a startegy as shown above. For any strategy A there will be a worst-case
permutation ⇡(A) so that the traveling cost for finding at least one entrance is maximal.

For convenience it su�ces to consider that only Fm is given and let us further assume that Fm is
sorted, that is f

1

� f
2

� · · · � fm. Let C(Fm, A) denote the maximum travel cost for algorithm
A and list Fm which is attained for some permutation ⇡(A,Fm). For a given set Fm we are
searching for the best strategy A and define the maximum-traversal-cost, maxTrav(Fm) by the
minimum cost over all possible traversal strategies A, that is

maxTrav(Fm) := min
A

C(Fm, A) .

Theorem 73 For a set of sorted distances Fm (i.e. f
1

� f
2

� · · · � fm) we have

maxTrav(Fm) := min
i

i · fi .

Proof. Consider an arbitrary strategy A. If a strategy A moves less than mini i · fi in total,
the strategy has moved less that j · fj for j = 1, . . . ,m. Thus, for any j, the strategy has visited
less than j segments, say kj < j segments, up to distance fj . Let us assume that the strategy
has visiting depth d

1

� d
2

� · · · � dm for the corridors. The adversary choose a permutation
⇡(A,Fm) so that the j-largest visiting depth dj of A is applied to the segment of depth fj . Thus
the strategy has not checked the segment for f

1

up to the end, since 1 · f
1

has not been traveled
in total. The segments of depths f

1

and f
2

has also not been visited up to the end since 2 · f
2

has not been travelled in total and the visiting depth at f
1

is as least as large as the visiting
depth in f

2

. Successively, the segments of depths f
1

, f
2

, . . . fj has not been visited up to the
end, since j · fj has not been travelled and the visiting depths of f

1

, f
2

, . . . fj�1

are as least as
large as the visiting depth of fj . Altogether, the strategy is not successful for ⇡ with cost less
than mini i · fi.
On the other hand if a strategy visits exactly i segments with depth fi in the worst case the
adversary presents the largest corridors but the ith-largest has length fi. This means by mini i·fi
the strategy will be successful for any permutation. 2

Now let us assume that in the online sense the distances are totally unknown to the agent.
Kirkpatrick defines a general strategy that always approximates the certificate whithin a factor of
O(maxTrav(Fm) log(min(m,maxTrav(Fm))) for any list Fm of m totally unknown segments. It
is shown that this factor is tight. The corresponding dovetailling strategy subdivides the overall
digging length successively in a logarithmic way among an arbitrary order of the segments.
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Figure 6.8: For m = 9 segments, in step c = 1, 2, . . . segment i is extended up to distance
⌅
c
i

⇧

from left to right. For f
3

= 3, 3 segments will be covered with distance 3 during execution of
step 9 on segment 3.

The online algorithm subdivides the cost w.r.t. a (discrete) hyperbolic function on the corre-
sponding m segments. More, precisely the algorithm work in rounds c = 1, 2, 3, 4, . . . For any
round c from left to right the path length on segment i is extended up to distance

⌅
c
i

⇧
. Figure 6.8

shows the extension scheme after 11 rounds for m = 9 segments. In any round any segment is
extended at most by a distance of 1. If some segment i is extended in step c we have c

i = t and
the segments 1, 2, . . . , i are all visited with depth at least t. This means that for any fi in the
interval from t � 1 to t, the strategy covers i segments up to distance fi after step c for any i
with c

i = t.

For convenience we assume that Fm contains only integer values. Now assume that for Fm we
have mini i · fi = j · fj . There is some c with c = j · fj and the strategy will be successful in this
step. For this c the overall cost for the strategy is

mX

t=1

jc
t

k


min(m,c)X

t=1

c

t
 c+

Z
min(m,c)

1

c

t
dt = c(1 + lnmin(m, c)) .

Altogether, the following Theorem holds.

Theorem 74 The hyperbolic traversal algorithm solves the multi-segment escape problem for
any list Fm with maximum traversal cost bounded by

D · (maxTrav(Fm) ln(min(m,maxTrav(Fm)))

for some constant D.

Proof. By the considerations above for Fm with integer values for D = 2. 2

Exercise 36 Show that Theorem 71 also holds for non-integer Fm by doing the full analysis
with a corresponding D.
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1 2 3 4 5 6 7 8

d1 + ✏/m =: f1(A,C)

d4 < f 0
4(C) =

C
4

f 0
1(C) =

C
1

f2(A,C) := d2 + ✏/m

f7(A,C) := f 0
7(C)

f8(A,C) := f 0
8(C)

f3(A,C) := d3 + ✏/m

Figure 6.9: For m = 8 segments and some fixed C we define the lengths f 0
i(C) = C

i and let d be

a constant so that
P

8

i=1

f 0
i(C) := d · C lnmin(C,m). A strategy A has visited the segments up

to distance d
1

� d
2

� · · · � d
8

and now attains the cost
Pm

i=1

di � d ·C lnmin(C,m) for the first
time. For any segment j with dj < f 0

j(C) we set fj(A,C) := f 0
j(C). For any k with dk � f 0

k(C)
we set fk(A,C) := dk + ✏/m for some arbitrarily small ✏. There has to be some smallest index
i so that di < f 0

i(C) and i · f 0
i(C) = C is an upper bound of the optimal cost for Fm(A,C).

Finally, we would like to argue that any deterministic strategy can be forced to have cost
in the size of d · (maxTrav(Fm) ln(min(m,maxTrav(Fm))) and the corresponding dovetailing
strategy is optimal in this sense. Therefore we assume that we consider overall cost C and
define family of sets F 0

m(C) by f 0
i(C) = C

i , so that maxTrav(Fm(C)) = C and also
Pm

i=1

fi(C) :=
d · C lnmin(C,m) hold, by choosing d apropriately.

For large C we have situation as depicted in Figure 6.9. As long as the overall cost of a
deterministic strategy A does not exceed cost d ·C lnmin(C,m) we do not let any corridors end.

For increasing visiting depth d
1

� d
2

� · · · � dm of the strategy we consider the first moment in
time where

Pm
i=1

di � d ·C lnmin(C,m) is attained. Immediately before not all corridors could
have have been visited up to distance f 0

i(C), otherwise the overall path length d ·C lnmin(C,m)
has been attained. Consider the smallest index i so that di < f 0

i(C). We finish the situation
by fixing segment k with dk  fk(C) to its final lenght fk(A,C) := f 0

k(C) and fix all remain-
ing segments with dj > f 0

j(C) by fj(A,C) := dj + ✏/m for some arbitrarily small ✏. Note
that fk(A,C), fj(A,C) < fi(A,C) holds for all corresponding k, j > i. The corresponding
configuration can be denoted by Fm(C,A). This means that maxTrav(Fm(C,A))  i · fi =
maxTrav(F 0

m(C)) = C holds and the lower bound is completed.

Theorem 75 For any deterministic online strategy A that solves the multi-segment escape prob-
lem we can construct input sequences Fm(A,C) so that A has cost at least d ·C lnmin(C,m) and
maxTrav(Fm(C,A))  C holds for some constant d and arbitrarily large values C.
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