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5.6.4 Recursions

Our next task is to make the integrals in 5.24 and 5.25 disappear by iterated substitution, and
then, to substitute variable l with concrete values l

1

(resp. l
2

), based on Lemma 64.
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By induction on n one quickly shows
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since F
0

(x) = A + cos↵x; compare the discussion after formula 5.18. Now we iteratively
substitute G
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in formula 5.24 and obtain
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By definition of l
1

, according to formula 5.15, we have ln(A+cos(↵)l1

A

) = 2⇡ cot↵, so that setting
l = l
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in formula 5.26 leads to

G
j

(l
1

) =
�
0

(l
2

)

F
0

(0)

jX

⌫=0

(�1)⌫

⌫!

� 2⇡

sin↵

�
⌫

�
j�1�⌫

(l
2

) (5.27)

where, for convenience, ��1

(l
2

) := F0(0)

�0(l2)
. We observe that this formula is also true for j = 0.

Multiplying both sides by F
0
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), and re-substituting 5.23, results in

F
j

(l
1

) =
F
0

(l
1

)

F
0

(0)

jX

⌫=0

(�1)⌫

⌫!

� 2⇡

sin↵

�
⌫

�
j�1�⌫

(l
2

) (5.28)

where ��1
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In a similar way we solve the recursion in 5.25, using
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) = ↵ cot↵, according to formulae 5.15 and 5.16. One obtains, after substituting l = l
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where F̂
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5.7 Generating functions

In order to solve the cross-wise recursions 5.28 and 5.29 for the numbers F
j

(l
1

) we are interested
in, we define the generating functions
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where F
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and from 5.29,
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Both equalities can be verified by plugging in expansions of the exponential functions, using
eW =

P1
j=0

W
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j!

, computing the products, and comparing coe�cients. Now we substitute 5.31

into 5.30, solve for F (Z), divide both sides by F
0

and expand by e
2⇡+↵
sin↵ to obtain the surprisingly

simple formula
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where v, r, w, s are the following functions of ↵:

v =
↵

sin↵
and r = e↵ cot↵

w =
2⇡ + ↵

sin↵
and s = e(2⇡+↵) cot↵. (5.33)

We recall that ↵ denotes the angle of the fighter’s velocity vector, given by ↵ = cos�1(1/v).

It is possible to expand the inverse of the denominator in 5.32 into a power series. This leads
to interesting expressions for the F

j

; but how to derive their signs seems not obvious.

5.8 Singularities

Both, numerator and denominator of function F (Z), are analytic on the complex plane. Thus,
singularities of F can arise only from zeroes of the denominator,

ewZ � sZ. (5.34)

This equation has received some attention in the area of delay di↵erential equations. We need
a simple fact that has been published in [? ].

Lemma 65 For s < ew, equation 5.34 has an infinite, discrete set of conjugate complex zeroes
none of which are real.

As the fighter’ speed v increases from 1 to infinity, angle ↵ of her velocity vector increases
from 0 to ⇡/2. This causes the ratio s/w in 5.34 to decrease from infinity to zero. Exactly at
v
c

= 2.6144 . . . does the equality s/w = e hold. Hence, for v > v
c

we have s < ew, so that the
denominator of F (Z) has infinitely many strictly complex zeroes. The root classification given
in [? ] shows that only few of them can cancel out with the numerator of 5.32. A complete
proof of this fact can also be found in [? ], Lemma 10-13.

We obtain the following from the above.

Lemma 66 If v > v
c

then function F (Z) has an infinite, discrete set of complex poles none of
which are real.

We are going to apply the following result from complex function theory; see, for example, [? ]
p. 240.
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Theorem 67 (Pringsheim) Let H(Z) =
P1

n=0

a
n

Zn be a power series with finite radius of
convergence, R. If H(Z) has only non-negative coe�cients a

n

, then point Z = R is a singularity
of H(z).

Now we are ready to prove Theorem 59.

Proof.[Proof of Theorem 59] Suppose that the fighter’s speed v is larger than v
c

⇡ 2.6144. By
Lemma 66, F (Z) does have a discrete set of poles, and therefore, a finite radius of convergence,
R. If all coe�cients F

j

of F (Z) were positive, R would be a singularity of F (Z), by Pringsheim’s
theorem; but we know from Lemma 66 that there are no real singularities. Thus, there must be
coe�cients F

j

 0, and we conclude from Lemma 64 that the fighter succeeds in containing the
fire. 2
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