Theoretical Aspects of Intruder Search

MA-INF 1318 Manuscript Wintersemsester 2015/2016

Elmar Langetepe

Bonn, 19. October 2015

5.6.4 Recursions

Our next task is to make the integrals in 5.24 and 5.25 disappear by iterated substitution, and then, to substitute variable l with concrete values l_{1} (resp. l_{2}), based on Lemma 64 .
Let us define, for positive real numbers x_{0}, \ldots, x_{n}, the auxiliary expression

$$
I_{n}\left(x_{n}\right):=\int_{0}^{x_{n}} \frac{1}{F_{0}\left(x_{n-1}\right)} \int_{0}^{x_{n-1}} \frac{1}{F_{0}\left(x_{n-2}\right)} \cdots \int_{0}^{x_{1}} \frac{1}{F_{0}\left(x_{0}\right)} \mathrm{d} x_{0} \ldots \mathrm{~d} x_{n-1}
$$

By induction on n one quickly shows

$$
I_{n}\left(x_{n}\right)=\frac{1}{n!} \frac{1}{\cos ^{n} \alpha}\left(\ln \left(\frac{A+\cos \alpha x_{n}}{A}\right)\right)^{n}
$$

since $F_{0}(x)=A+\cos \alpha x$; compare the discussion after formula 5.18 . Now we iteratively substitute G_{j} in formula 5.24 and obtain

$$
\begin{equation*}
G_{j+1}(l)=\frac{\phi_{0}\left(l_{2}\right)}{F_{0}(0)} \sum_{\nu=0}^{j}(-1)^{\nu} I_{\nu}(l) \chi_{j-\nu}\left(l_{2}\right)+(-1)^{j+1} I_{j+1}(l) . \tag{5.26}
\end{equation*}
$$

By definition of l_{1}, according to formula 5.15 , we have $\ln \left(\frac{A+\cos (\alpha) l_{1}}{A}\right)=2 \pi \cot \alpha$, so that setting $l=l_{1}$ in formula 5.26 leads to

$$
\begin{equation*}
G_{j}\left(l_{1}\right)=\frac{\phi_{0}\left(l_{2}\right)}{F_{0}(0)} \sum_{\nu=0}^{j} \frac{(-1)^{\nu}}{\nu!}\left(\frac{2 \pi}{\sin \alpha}\right)^{\nu} \chi_{j-1-\nu}\left(l_{2}\right) \tag{5.27}
\end{equation*}
$$

where, for convenience, $\chi_{-1}\left(l_{2}\right):=\frac{F_{0}(0)}{\phi_{0}\left(l_{2}\right)}$. We observe that this formula is also true for $j=0$. Multiplying both sides by $F_{0}\left(l_{1}\right)$, and re-substituting 5.23 , results in

$$
\begin{equation*}
F_{j}\left(l_{1}\right)=\frac{F_{0}\left(l_{1}\right)}{F_{0}(0)} \sum_{\nu=0}^{j} \frac{(-1)^{\nu}}{\nu!}\left(\frac{2 \pi}{\sin \alpha}\right)^{\nu} \phi_{j-1-\nu}\left(l_{2}\right) \tag{5.28}
\end{equation*}
$$

where $\phi_{-1}\left(l_{2}\right):=F_{0}(0)$.
In a similar way we solve the recursion in 5.25 , using

$$
\int_{0}^{x_{n}} \frac{1}{\phi_{0}\left(x_{n-1}\right)} \int_{0}^{x_{n-1}} \cdots \int_{0}^{x_{1}} \frac{1}{\phi_{0}\left(x_{0}\right)} \mathrm{d} x_{0} \ldots \mathrm{~d} x_{n-1}=\frac{1}{n!} \frac{1}{\cos ^{n} \alpha}\left(\ln \left(\frac{x_{n}}{l_{1}}\right)\right)^{n}
$$

and $\ln \left(\frac{l_{2}}{l_{1}}\right)=\alpha \cot \alpha$, according to formulae 5.15 and 5.16. One obtains, after substituting $l=l_{2}$,

$$
\begin{equation*}
\phi_{j}\left(l_{2}\right)=\frac{\phi_{0}\left(l_{2}\right)}{\phi_{0}\left(l_{1}\right)} \sum_{\nu=0}^{j} \frac{(-1)^{\nu}}{\nu!}\left(\frac{\alpha}{\sin \alpha}\right)^{\nu} \hat{F}_{j-\nu}\left(l_{1}\right) \tag{5.29}
\end{equation*}
$$

where $\hat{F}_{0}\left(l_{1}\right):=\phi_{0}\left(l_{1}\right)$ and $\hat{F}_{i+1}\left(l_{1}\right):=F_{i+1}\left(l_{1}\right)$.

5.7 Generating functions

In order to solve the cross-wise recursions 5.28 and 5.29 for the numbers $F_{j}\left(l_{1}\right)$ we are interested in, we define the generating functions

$$
F(Z):=\sum_{j=0}^{\infty} F_{j} Z^{j} \text { and } \phi(Z):=\sum_{j=0}^{\infty} \phi_{j} Z^{j}
$$

where $F_{j}:=F_{j}\left(l_{1}\right)$ and $\phi_{j}:=\phi_{j}\left(l_{2}\right)$, for short. From 5.28 we obtain

$$
\begin{equation*}
F(Z)=\frac{F_{0}}{F_{0}(0)} e^{-\frac{2 \pi}{\sin \alpha} Z}\left(Z \phi(Z)+F_{0}(0)\right) \tag{5.30}
\end{equation*}
$$

and from 5.29,

$$
\begin{equation*}
\phi(Z)=\frac{\phi_{0}}{\phi_{0}\left(l_{1}\right)} e^{-\frac{\alpha}{\sin \alpha} Z}\left(Z F(Z)-F_{0}+\phi_{0}\left(l_{1}\right)\right) \tag{5.31}
\end{equation*}
$$

Both equalities can be verified by plugging in expansions of the exponential functions, using $e^{W}=\sum_{j=0}^{\infty} \frac{W^{j}}{j!}$, computing the products, and comparing coefficients. Now we substitute 5.31 into 5.30 , solve for $F(Z)$, divide both sides by F_{0} and expand by $e^{\frac{2 \pi+\alpha}{\sin \alpha}}$ to obtain the surprisingly simple formula

$$
\begin{equation*}
\frac{F(Z)}{F_{0}}=\frac{e^{v Z}-r Z}{e^{w Z}-s Z} \tag{5.32}
\end{equation*}
$$

where v, r, w, s are the following functions of α :

$$
\begin{align*}
v & =\frac{\alpha}{\sin \alpha} \quad \text { and } r=e^{\alpha \cot \alpha} \\
w & =\frac{2 \pi+\alpha}{\sin \alpha} \quad \text { and } s=e^{(2 \pi+\alpha) \cot \alpha} \tag{5.33}
\end{align*}
$$

We recall that α denotes the angle of the fighter's velocity vector, given by $\alpha=\cos ^{-1}(1 / v)$.
It is possible to expand the inverse of the denominator in 5.32 into a power series. This leads to interesting expressions for the F_{j}; but how to derive their signs seems not obvious.

5.8 Singularities

Both, numerator and denominator of function $F(Z)$, are analytic on the complex plane. Thus, singularities of F can arise only from zeroes of the denominator,

$$
\begin{equation*}
e^{w Z}-s Z \tag{5.34}
\end{equation*}
$$

This equation has received some attention in the area of delay differential equations. We need a simple fact that has been published in [?].

Lemma 65 For $s<e w$, equation 5.34 has an infinite, discrete set of conjugate complex zeroes none of which are real.

As the fighter' speed v increases from 1 to infinity, angle α of her velocity vector increases from 0 to $\pi / 2$. This causes the ratio s / w in 5.34 to decrease from infinity to zero. Exactly at $v_{c}=2.6144 \ldots$ does the equality $s / w=e$ hold. Hence, for $v>v_{c}$ we have $s<e w$, so that the denominator of $F(Z)$ has infinitely many strictly complex zeroes. The root classification given in [?] shows that only few of them can cancel out with the numerator of 5.32. A complete proof of this fact can also be found in [?], Lemma 10-13.
We obtain the following from the above.
Lemma 66 If $v>v_{c}$ then function $F(Z)$ has an infinite, discrete set of complex poles none of which are real.

We are going to apply the following result from complex function theory; see, for example, [?] p. 240 .

Theorem 67 (Pringsheim) Let $H(Z)=\sum_{n=0}^{\infty} a_{n} Z^{n}$ be a power series with finite radius of convergence, R. If $H(Z)$ has only non-negative coefficients a_{n}, then point $Z=R$ is a singularity of $H(z)$.

Now we are ready to prove Theorem 59.
Proof.[Proof of Theorem 59] Suppose that the fighter's speed v is larger than $v_{c} \approx 2.6144$. By Lemma 66, $F(Z)$ does have a discrete set of poles, and therefore, a finite radius of convergence, R. If all coefficients F_{j} of $F(Z)$ were positive, R would be a singularity of $F(Z)$, by Pringsheim's theorem; but we know from Lemma 66 that there are no real singularities. Thus, there must be coefficients $F_{j} \leq 0$, and we conclude from Lemma 64 that the fighter succeeds in containing the fire.

