Theoretical Aspects of Intruder Search

Course Wintersemester 2015/16 Escape Paths for the Intruder

Elmar Langetepe

University of Bonn

January 26th, 2016

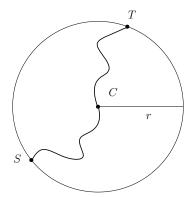
Reverse Situation

- Take over the position of the intruder
- Try to escape from an partially unknown environment
- The adversary manipulates the environment
- Leaev the area as soon as possible
- Lost in a forest Bellman 1956
- Escape paths for region R
- Single deterministic path
- Leave area from any starting point
- Adversary translates and rotates R
- Minimize the length of successful path
- Geometric argumentations
- Only known for few shapes

Simple examples

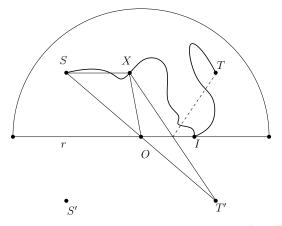
Obviously: The diameter of any region R is always an escape path!

Theorem 69: The shortest escape path for a circle of radius r is a line segment of length 2r.



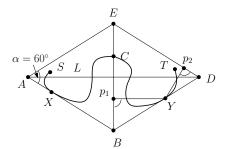
Also for semicircles

Theorem 70: The shortest escape path for a semicircle of radius r is a line segment of length 2r.



More generally for a rhombus with angle 60°

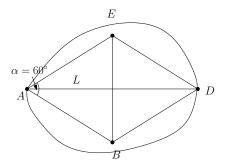
Theorem 71: The shortest escape path for rhombus of diameter L with angle $\alpha = 60^{\circ}$ is a line segment of length L.



Fatness definition!

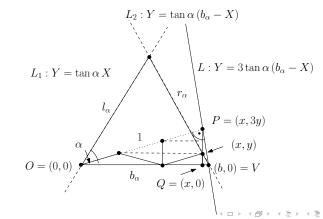
Definition: Fatness w.r.t. diameter! Rhombus-Fat!

Corollary: The shortest escape path for rhombus-fat convex set of diameter L is a line segment of length L.

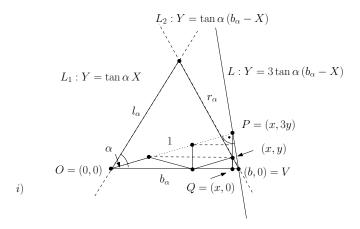


- Equilateral triangle: Besicovitch
- Zig-Zag escape path with length ≈ 0.9812
- More generally from Coulton and Movshovich (2006)
- Isosceles triangle for α and b_{α}
- b_{α} is diameter!

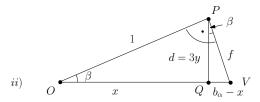
i)



- Construct symmetric Zig-Zag path of small length
- Asssume length 1.



- Extract triangle
- $\bullet \ \frac{1}{x} = \frac{b_{\alpha}}{1} \ x = \frac{1}{b_{\alpha}}$



i)

Finally we determine b_{α} :

$$y=\tanlpha\left(b_lpha-rac{1}{b_lpha}
ight)$$
 and $x=rac{1}{b_lpha}$ and $x^2+(3y)^2=1$ which gives

$$b_{\alpha} = \sqrt{1 + \frac{1}{9 \tan^2 \alpha}}.$$

$$L_2: Y = \tan \alpha \, (b_{\alpha} - X)$$

$$L: Y = 3 \tan \alpha \, (b_{\alpha} - X)$$

$$P = (x, 3y)$$

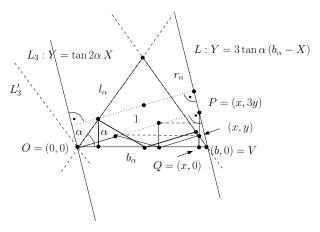
$$Q = (0, 0)$$

$$b_{\alpha}$$

$$Q = (x, 0)$$

Further constraint for α

There should be no better Zig-Zag path for T_{α} ! Line L_3 : $Y = \tan(2\alpha)$ runs in parallel with L_2 . This means $-3\tan\alpha = \tan2\alpha$ or $\tan\alpha = \sqrt{\frac{5}{3}}$.



Besicovitch triangles

Theorem 72: For any $\alpha \in [\arctan(\sqrt{\frac{5}{3}}), 60^{\circ}]$ there is a symmetric Zig-Zag path of length 1 that is an escape path of T_{α} smaller than the diameter b_{α} .

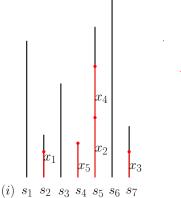
$$ullet$$
 $b_lpha = \sqrt{1 + rac{1}{9 an^2 lpha}}$

•
$$\alpha = 60^\circ$$
: $b_\alpha = \sqrt{\frac{28}{27}}$

- ullet $b_lpha:=1\Longrightarrow\sqrt{rac{27}{28}}<1$ is Zig-Zag path length
- Optimality? Yes!

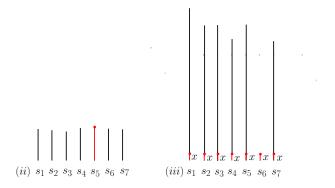
Different performance measures

- Set L_m of m line segments s_i of unknown length $|s_i|$
- Dark corridors, escape, digging for oil
- Test corridors successively
- s_{j_1} up to a certain distance x_1 , then s_{j_2} for another distance x_2 and so on



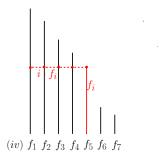
Length are known! Extreme Cases!

- Assume distribution is known!
- $f_1 \ge f_2 \ge \cdots \ge f_m$ order of the length given
- Extreme cases! Good strategies!



Known length in general

- ullet $f_1 \geq f_2 \geq \cdots \geq f_m$ order of the length given
- Check *i* arbitrary segments with length f_i : min_i $i \cdot f_i$ is a reasonable strategy
- $C(F_m, A)$ travel cost for algorithm A
- $\max Trav(F_m) := \min_A C(F_m, A)$



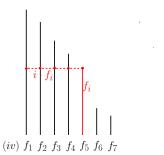
Optimal strategy for this case

Theorem 73: For a set of sorted distances F_m (i.e.

$$f_1 \geq f_2 \geq \cdots \geq f_m$$
) we have

$$\max \operatorname{Trav}(F_m) := \min_i i \cdot f_i$$
.

Proof:



Optimal strategy for this case

Theorem 73: For a set of sorted distances F_m (i.e. $f_1 \geq f_2 \geq \cdots \geq f_m$) we have

$$\max \operatorname{Trav}(F_m) := \min_i i \cdot f_i$$
.

Proof:

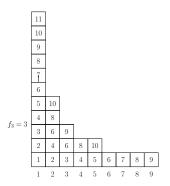
- Arbitrary strategy A
- Less than $\min_i i \cdot f_i$ means less than $j \cdot f_i$ for any j
- Visiting depth $d_1 \geq d_2 \geq \cdots \geq d_m$
- Not reached f_1 by d_1 , not reached f_2 , since $d_1 + d_2 < 2f_2$ and $d_2 \le d_1$ and so on
- Not successful!
- min_i i · f_i always sufficient!

Online Strategy

- F_m with $f_1 \geq f_2 \geq \cdots \geq f_m$ not known
- Compete against $\max Trav(F_m) := \min_i i \cdot f_i$
- Dovetailing strategy: Rounds $c = 1, 2, 3, 4, \dots$
- For any round c from left to right: Path length of segment i is extended up to distance $\left\lfloor \frac{c}{i} \right\rfloor$

Online Strategy

- Dovetailing strategy: Rounds $c = 1, 2, 3, 4, \dots$
- For any round c from left to right: Path length of segment i is extended up to distance $\left\lfloor \frac{c}{i} \right\rfloor$



Online Strategy!

Theorem 74: Hyperbolic traversal algorithm solves the multi-segment escape problem for any list F_m with maximum traversal cost bounded by

$$D \cdot (\max Trav(F_m) \ln(\min(m, \max Trav(F_m)))$$

for some constant D.

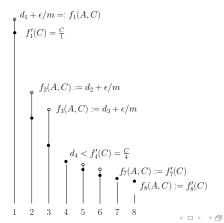
Proof: (W.I.o.g. F_m integers)

- Let $\min_i i \cdot f_i = j \cdot f_j$ for some j
- c with $c = j \cdot f_j$ exists (Round c)
- Overoll cost:

$$\sum_{t=1}^m \left\lfloor \frac{c}{t} \right\rfloor \leq \sum_{t=1}^{\min(m,c)} \frac{c}{t} \leq c + \int_1^{\min(m,c)} \frac{c}{t} \ dt = c(1 + \ln \min(m,c)).$$

Matches Lower bound!

Theorem 75: For any deterministic online strategy A that solves the multi-segment escape problem we can construct input sequences $F_m(A, C)$ so that A has cost at least $d \cdot C \ln \min(C, m)$ and $\max \operatorname{Trav}(F_m(C, A)) \leq C$ holds for some constant d and arbitrarily large values C.



Matches Lower bound! Proof!

- C is given! $f'_i(C) = \frac{C}{i}$ (not yet fixed)
- Wait until cost $\sum_{i=1}^{m} d_i \geq d \cdot C \ln \min(C, m)$ for some d
- Fix the scenario as shown below!

