Theoretical Aspects of Intruder Search

Course Wintersemester 2015/16 Introduction

Elmar Langetepe
University of Bonn

October 20th, 2015

Organisation

- Lecture: Tuesday 16:15 to 17:45
- Exercise groups: Starting next week 28/29th

Wednesday: 14-16
Thursday: 10-12

- Sign in
- Manuscipt on the webpage
- Slides on the webpage
- Exercises
- Today: Introduction, different topics

Main problems and intention

- Evader/Intruder versus Searcher/Guard
- Escaping/Intruding versus Catching/Avoidance
- Game, Competition
- Different Scenarios: Environment, Facilities, Goal, Model
- Discrete, Continuous, Geometry, Combinatorics
- Interpretation: Possible Position of the Intruder, Decontamination, Firefighting
- Algorithmic track
- Computational complexity
- Correctness or Failure
- Efficiency
- Optimality
- Prerequisites: Algorithms, Datastructure, Analysis, Complexity, Computability
- Models, Methods, Proof Techniques, Tools
- Today Introduction

Example I: Polygon, Safe an Area, Complexity

- Continuous Problem
- Complexity Result
- NP-hardness
- Reduction

Optimal-Closing-Sequence:
Instance: Simple polygon, set of n intruders, set of m doors to be closed successively time c_{i}, safes area A_{i}.
Output: Compute the optimal sequence of doors that has to be closed for maximizing the are the area safed.

Subset-Sum:
Instance: n integer numbers $a_{1}, a_{2}, \ldots, a_{n}$, integer treshhold t Output: Sum of a subset of $a_{1}, a_{2}, \ldots, a_{n}$ as close as possible to t, not exceeding t.

- Reduction to Optimal-Closing-Sequence
- Construct Instance in polynomial time
- Solution for Optimal-Closing-Sequence \Leftrightarrow Solution for Subset-Sum
- Circle radius r, center s, intruder start at s
- Chords of length a_{i}, polygonal chain: $A_{i}, B_{i}, C_{i}^{\prime}, D_{i}$
- Door d_{i} safes Area $A_{i}=\frac{h a_{i}}{4}$
- Speed $v(t+0.5)=r$ for every Intruder
- Choose r so that $v t<x_{i}=\sqrt{r^{2}-\left(\frac{a_{i}}{2}\right)^{2}}$
- Substituting v by $\frac{r}{(t+0.5)}$:

$$
\left(\frac{a_{i}}{2}\right)^{2}<\left(1-\frac{t^{2}}{(t+0.5)^{2}}\right) r^{2}
$$

Reduction: Subset-Sum with treshhold

Reach C_{i}^{\prime} after $t+0.5$ steps, do not reach B_{i} after t steps. Maximize!

Theorem 1: Computing an optimal-enclosement-sequence is NP-hard.

Proof: Reduction from Subset-Sum, Equivalence!

Example II: Grid Graph

- Discrete Problem
- Correctness/Failure
- Structural Properties

Evader-Enclosement in Grid-Graphs
Instance: A rectangular grid, a start vertex s of the evader and k protecting guards per time step.
Output: Compute an efficient protection strategy that encloses the evader (and finally find the evader).

A Two Player Game!

Example II: Grid Graph, $k=2$

Evader moves (4Neighborship), Guards will be placed

Example II: Grid Graph, $k=2$

Evader moves (4Neighborship), Guards will be placed

Example II: Grid Graph, $k=2$

Evader moves (4Neighborship), Guards will be placed

Example II: Grid Graph, $k=2$

Evader moves (4Neighborship), Guards will be placed

Example Applet! Enclosing the Evader first!

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed

Step I: r_{I} blocked cells in D_{I+1}, D_{I+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_{l} \geq 1+r_{l}$ by induction

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_{l} \geq 1+r_{l}$ by induction

- Ind. base: $I=0, r_{0}=0 B_{0}=1$

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_{l} \geq 1+r_{l}$ by induction

- Ind. base: $I=0, r_{0}=0 B_{0}=1$
- Ind. step: Holds for $I \geq 0, x \leq r_{I}$ blocked cells in D_{I+1}

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_{l} \geq 1+r_{l}$ by induction

- Ind. base: $I=0, r_{0}=0 B_{0}=1$
- Ind. step: Holds for $I \geq 0, x \leq r_{l}$ blocked cells in D_{l+1}
- Move of the evader: $B_{l+1}^{\prime}=1+r_{l}-x+1$

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_{I} \geq 1+r_{l}$ by induction

- Ind. base: $I=0, r_{0}=0 B_{0}=1$
- Ind. step: Holds for $I \geq 0, x \leq r_{l}$ blocked cells in D_{I+1}
- Move of the evader: $B_{l+1}^{\prime}=1+r_{l}-x+1$
- Block of the guard in $D_{l_{1}}: I_{1} \leq I+1$

$$
\Rightarrow r_{I+1}=r_{I}-x, B_{I+1} \geq 1+r_{I+1}
$$

Example II: Grid Graph, $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_{I} \geq 1+r_{l}$ by induction

- Ind. base: $I=0, r_{0}=0 B_{0}=1$
- Ind. step: Holds for $I \geq 0, x \leq r_{l}$ blocked cells in D_{I+1}
- Move of the evader: $B_{l+1}^{\prime}=1+r_{l}-x+1$
- Block of the guard in $D_{l_{1}}: I_{1} \leq I+1$

$$
\Rightarrow r_{I+1}=r_{I}-x, B_{I+1} \geq 1+r_{I+1}
$$

- Block of the guard in $D_{l_{1}}: I_{1}>I+1$

$$
\Rightarrow r_{l+1}=r_{l}-x+1, B_{l+1} \geq 1+r_{l+1}
$$

Example II: Grid Graph, $k=2$

Lemma 3: For $k=2$ there is a successful enclosement strategy, that encloses the evader after 8 steps. After 9 additional steps, the evader will be found.

Example II: Grid Graph, $k=2$

Lemma 3: For $k=2$ there is a successful enclosement strategy, that encloses the evader after 8 steps. After 9 additional steps, the evader will be found.

Example II: Grid Graph, $k=2$

Firefigthing interpretation! Outside the fire!

Lemma 3: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successul strategy encloses an area of at least 18 burning vertices. This bound is tight.

Example II: Grid Graph, $k=2$

Firefigthing interpretation! Outside the fire!

Lemma 3: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successul strategy encloses an area of at least 18 burning vertices. This bound is tight.

- $L=\{(x, y)| | x \mid \leq I$ and $|y| \leq I\}$ and $0 \leq t \leq T$

Example II: Grid Graph, $k=2$

Firefigthing interpretation! Outside the fire!

Lemma 3: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successul strategy encloses an area of at least 18 burning vertices. This bound is tight.

- $L=\{(x, y)| | x \mid \leq I$ and $|y| \leq I\}$ and $0 \leq t \leq T$
- $b_{v, t}=\left\{\begin{array}{lll}1 & : & \text { vertex } v \in L \text { burns before or at time } t \\ 0 & : & \text { otherwise }\end{array}\right.$

Example II: Grid Graph, $k=2$

Firefigthing interpretation! Outside the fire!

Lemma 3: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successul strategy encloses an area of at least 18 burning vertices. This bound is tight.

- $L=\{(x, y)| | x \mid \leq I$ and $|y| \leq I\}$ and $0 \leq t \leq T$
- $b_{v, t}=\left\{\begin{array}{lll}1 & : & \text { vertex } v \in L \text { burns before or at time } t \\ 0 & : & \text { otherwise }\end{array}\right.$
- $d_{v, t}=\left\{\begin{array}{lll}1 & : & \text { vertex } v \in L \text { is defended before or at time } t \\ 0 & : & \text { otherwise }\end{array}\right.$

Example II: Grid Graph, $k=2$

Firefigthing interpretation! Integer LP for $I \leq 8, T \leq 9$

$$
\begin{aligned}
& \text { Min } \sum_{v \in L} b_{v, T} \\
& \\
& b_{v, t}+d_{v, t}-b_{w, t-1} \geq 0 \\
& b_{v, t}+d_{v, t} \leq 1 \\
& b_{v, t}-b_{v, t-1} \geq 0 \\
& d_{v, t}-d_{v, t-1} \geq 0 \\
& \sum_{v \in L}\left(d_{v, t}-d_{v, t-1}\right) \geq 2 \\
& b_{v, 0}=1 \\
& b_{v, 0}=0 \\
& d_{v, 0}=0 \\
& d_{v} \in L \in L \in N(w), 1 \leq t \leq T \\
& d_{v, t}, b_{v, t} \in\{v \in L, 1 \leq t \leq T \leq T \leq T \\
&\{0,1\}: \forall v \in L \text { is the origin }(0,0) \\
&: \forall v \in L, 1 \leq t \leq T
\end{aligned}
$$

Example II: Grid Graph, $k=2$

Lemma 4: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successul strategy encloses an area of at least 18 burning vertices. This bound is tight.

Optimal solution by LP solver:

Example II: Grid Graph, $k=2$

Lemma 4: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successul strategy encloses an area of at least 18 burning vertices. This bound is tight.

Optimal solution by LP solver:

Example III: Continuous Firefigthing

Geometric Firefigther Problem
Instance: A circle with center C of radius A that grows with unit speed. An agent who builds a firebreak with speed $v>1$ Output: Compute a strategy that finally fully enclose the spreading fire.

Example III: Continuous Firefigthing

Geometric Firefigther Problem

Instance: A circle with center C of radius A that grows with unit speed. An agent who builds a firebreak with speed $v>1$
Output: Compute a strategy that finally fully enclose the spreading fire.

A circular strategy!

Example III: Continuous Firefigthing

Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefigther is larger than 2π.

Proof:

Example III: Continuous Firefigthing

Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefigther is larger than 2π.

Proof:

- Choose $p=(A+x, 0)$ away from the fire

Example III: Continuous Firefigthing

Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefigther is larger than 2π.

Proof:

- Choose $p=(A+x, 0)$ away from the fire
- Loop around origin: $\frac{2 \pi(A+x)}{v}$ time

Example III: Continuous Firefigthing

Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefigther is larger than 2π.

Proof:

- Choose $p=(A+x, 0)$ away from the fire
- Loop around origin: $\frac{2 \pi(A+x)}{v}$ time
- Circle expands $\frac{2 \pi(A+x)}{v}$, smaller than x ?

Example III: Continuous Firefigthing

Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefigther is larger than 2π.

Proof:

- Choose $p=(A+x, 0)$ away from the fire
- Loop around origin: $\frac{2 \pi(A+x)}{v}$ time
- Circle expands $\frac{2 \pi(A+x)}{v}$, smaller than x ?
- Equivalent to $\frac{2 \pi A}{x}+2 \pi \leq v$

Example III: Continuous Firefigthing

Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefigther is larger than 2π.

Proof:

- Choose $p=(A+x, 0)$ away from the fire
- Loop around origin: $\frac{2 \pi(A+x)}{v}$ time
- Circle expands $\frac{2 \pi(A+x)}{v}$, smaller than x ?
- Equivalent to $\frac{2 \pi A}{x}+2 \pi \leq v$
- If and only if $v>2 \pi$

Example III: Continuous Firefigthing

Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefigther is larger than 2π.

Proof:

- Choose $p=(A+x, 0)$ away from the fire
- Loop around origin: $\frac{2 \pi(A+x)}{v}$ time
- Circle expands $\frac{2 \pi(A+x)}{v}$, smaller than x ?
- Equivalent to $\frac{2 \pi A}{x}+2 \pi \leq v$
- If and only if $v>2 \pi$

GeoGebra Simulation

Example IV: Firefigthing Grid-World Simulation

Discrete Firefigther Problem
Instance: Grid contamination of size B, spreads 4Neighborship after n time steps. Agent cleans a cell, builds a wall cell and leaves the cell within b time steps.
Output: Compute a strategy that finally fully enclose the spreading fire.

Example IV: Firefigthing Grid-World Simulation

Discrete Firefigther Problem
Instance: Grid contamination of size B, spreads 4Neighborship after n time steps. Agent cleans a cell, builds a wall cell and leaves the cell within b time steps.
Output: Compute a strategy that finally fully enclose the spreading fire.

Example: $n=30, b=5, B=3 \times 3$

Example IV: Firefigthing Grid-World Simulation

Discrete Firefigther Problem
Instance: Grid contamination of size B, spreads 4Neighborship after n time steps. Agent cleans a cell, builds a wall cell and leaves the cell within b time steps.
Output: Compute a strategy that finally fully enclose the spreading fire.

Example IV: Firefigthing Grid-World Simulation

Conjecture 1: For a grid fire thats spreads after n time steps and an agent that builds a wall within b time steps, the spiral strategy only succeeds if $b<\frac{n-1}{2}$ holds.

By simulation!

