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Efficient Algorithm for Trees

Corollary 14: Computing a strategy for a tree T of size n that
saves at least k vertices can be done in O(n2kk) time.

Run above algorithm for i = 1, . . . , k

Sufficient!∑k
i=1 i2

in ≤ kn
∑k

i=1 2i = (2k+1 − 2)kn
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Subexponential bound:

Bound for k: Show k ≤
√

2n

Lemma 15: If a vertex at depth d is burning in an optimal
strategy for an instance of the firefigther problem on trees, at least
1
2(d2 + d) vertices are safe.

Proof:

Optimal strategy, vertex v at depth d burning

Guard at vi in every depth 1, 2, . . . , d

Tvi has size ≥ d − i + 1∑d
i=1(d − i + 1) = 1

2(d2 + d)
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Subexponential bound:

Bound for k: Show k ≤
√

2n

Theorem 16: There is an O
(

2
√
2nn3/2

)
algorithm for the

firefigther problem on a tree of size n.

Proof:

Run the algorithm for k ≤
√

2n: (n · 2k · k)

Above Lemma: Burning vertex at depth
√

2n, then
n +

√
n/2 > n vertices safe? Contradiction!

All vertices of depth k =
√

2n has to be safe for an optimal
strategy

Suffices to use this bound!
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Dynamic guards in Trees

Stationary guards vs. dynamic guards!

NP-hard for general graphs ⇒ Trees

Many different variants: Here Clearing of edges!

Weights for the Corridors. Weights for the vertices.

Recontamination, if weight is to small!

Intruder has maximum speed.
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Contiguous search strategy

Weighted Graphs G = (V ,E )

1 Place p guards on a vertex.

2 Move r guards along an edge.

The set of all cleared edges Ei after step i has to be connected!

Edge weights w(e), vertex weights w(v) with w(v) ≥ w(e)
for any e = (v , u) ∈ E

Recontamination by non-protected paths

Infinite speed for the Intruder

Example: Blackboard
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Optimal contiguous search strategy

Weighted Tree T = (V ,E ), search number cs(T )!
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Optimal contiguous search strategy

Theorem 17: For any weighted tree T there is a monotone
contiguous search strategy with cs(T ) agents where all agents
initially start at the same vertex b.
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Boundary of edge subset!

X ⊆ E

boundary vertices δ(X ):
Vertices that have vertices incident to X and E \ X
w(Xi ) :=

∑
v∈δ(Xi )

w(v)

w({e4, e5, e6}) = 7 and w({e2}) = 10.
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Optimal contiguous search strategy, Crusade definition

(X0,X1, . . . ,Xm) subsets Xi ⊆ E

X0 = ∅ and Xm = E

|Xi \ Xi−1| ≤ 1 for 1 ≤ i ≤ m

Connected if Xi connected for 1 ≤ i ≤ m

Frontier: max1≤i≤m w(Xi )

Progressive: X0 ⊆ X1 ⊆ · · · ⊆ Xm and
|Xi \ Xi−1| = 1 for 1 ≤ i ≤ m
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Contiguous search and connected crusade

cs(T ) ≤ k and a contiguous search!

Xi set after each step!

Search step, at most one additional edge, means
|Xi \ Xi−1| ≤ 1

Xi not destructed, means w(Xi ) ≤ k.

Xi connected, because contiguous search

X0 = ∅ and Xm = E

Lemma 18: For cs(T ) ≤ k there is a connected crusade of
frontier at most k.
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Optimal contiguous search strategy

Weighted Tree T = (V ,E ), search number cs(T )!
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Contiguous search and connected crusade

Lemma 19: For cs(T ) ≤ k there is a progressive connected
crusade of frontier at most k .

Connected crusades C = (X0,X1, . . . ,Xm) of frontier at most k
Choose one with:

1
∑m

i=0(w(Xi ) + 1) is minimum.

2 Amog all crusade satisfying condition 1. choose one with:∑m
i=0 |Xi | is minimum.

Has to exist, show that this is progressive:
|Xi \ Xi−1| = 1 for 1 ≤ i ≤ m
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Difference: Connected Crusade, Progessive Crusade

Connected crusade:
(∅, {e1}, {e1, e2}, {e2}, {e2, e3}, {e1, e2, e3}, {e3, e4}, {e1, e3, e4},
{e1, e2, e3, e4}): |Xi \ Xi−1| ≤ 1 for 1 ≤ i ≤ m
Pogressive con. crusade:
(∅, {e1}, {e1, e2}, {e1, e2, e3}, {e1, e2, e3, e4}),
|Xi \ Xi−1| = 1 for 1 ≤ i ≤ m, X0 ⊆ X1 ⊆ · · · ⊆ Xm

e1

e2
e3

e4
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Contiguous search and connected crusade

1
∑m

i=0(w(Xi ) + 1) is minimum.

2 Amog all crusade satisfying condition 1. choose one with:∑m
i=0 |Xi | is minimum.

Assume: C = (X0,X1, . . . ,Xm) with |Xi \ Xi−1| = 0

Take: C ′ = (X0, . . . ,Xi−1,Xi+1, . . . ,Xm), Condition 1.!

This means Xi ⊆ Xi−1.

|Xi+1 \ Xi−1| ≤ 1 from |Xi+1 \ Xi | ≤ 1 and Xi ⊆ Xi−1,

Connected!

Can assume: |Xi \ Xi−1| = 1 for 1 ≤ i ≤ m!
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Progressive connected crusade, frontier at most k

1
∑m

i=0(w(Xi ) + 1) is minimum.

2 Amog all crusade satisfying condition 1. choose one with:∑m
i=0 |Xi | is minimum.

Prove Xi ⊆ Xi−1!

Case 1.: w(Xi−1 ∪ Xi ) < w(Xi )

C ′ = (X0, . . . ,Xi−1,Xi−1 ∪ Xi ,Xi+1, . . . ,Xm), Cond. 1.!

Xi and Xi−1 connected, Xi−1 ∪ Xi is connected since
|Xi \ Xi−1| = 1

|Xi+1 \ (Xi−1 ∪ Xi )| ≤ 1 since |Xi+1 \ Xi | = 1.
If |Xi+1 \ (Xi−1 ∪ Xi )| = 0 go back to former case!

Case 2.: w(Xi−1 ∪ Xi ) ≥ w(Xi )
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Progressive connected crusade, frontier at most k

1
∑m

i=0(w(Xi ) + 1) is minimum.

2 Amog all crusade satisfying condition 1. choose one with:∑m
i=0 |Xi | is minimum.

Prove Xi ⊆ Xi−1!

Case 2.: w(Xi−1 ∪ Xi ) ≥ w(Xi )

Exercise: w(A∪B) + w(A∩B) ≤ w(A) + w(B) link sets A,B

w(Xi−1 ∩ Xi ) ≤ w(Xi ) for 1 ≤ i ≤ m

C ′′ = (X0, . . . ,Xi−2,Xi−1 ∩ Xi ,Xi+1, . . . ,Xm)

Cond. 2.! |Xi−1 ∩ Xi | ≥ |Xi−1| which gives Xi−1 ⊆ Xi

|Xi \ (Xi ∩ Xi−1)| = |Xi \ Xi−1| = 1 and
|(Xi ∩ Xi−1) \ Xi−2| ≤ |Xi−1 \ Xi−2| ≤ 1

Show that C ′′ is connected!!
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Progressive connected crusade, frontier at most k

C ′′ = (X0, . . . ,Xi−2,Xi−1 ∩ Xi ,Xi+1, . . . ,Xm) connected?

Ass. Xi−1 ∩ Xi not connected!

{e} = Xi \ Xi−1 and W = Xi−1 \ Xi and Z = Xi−1 ∩ Xi . By
assumption Z = Z ′ ∪ Z ′′ where Z ′ and Z ′′ do not share a
vertex.

Contrad. T is a tree, Xi−1 ∩ Xi is also connected.

e

W

Xi

Xi−1

Z ′′

Z ′
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Contiguous monton. search and progr. connected crusade

Lemma 19: For cs(T ) ≤ k there is a progressive connected
crusade with frontier at most k .

Build strategy from progressive connected crusade frontier at
most k!

First, double the edges T , T ′!

e1

e2

e4

e′′1

e′2

e′′4

e′1

e′′2

e′4
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Contiguous monton. search and progr. connected crusade

Lemma 20: Let T ′ be a tree so that every link has at least one
vertex of degree 2. If there is a progressive connected crusade of
frontier ≤ k in T ′, there is a monotone contiguous search strategy
using ≤ k guards in T ′ and the guards can be initially placed at a
single vertex v1.

Proof: Inductive argument!

pcc. C = (X0,X1, . . . ,Xm) frontier ≤ k

ei = (vi , ui ) := Xi \ Xi−1, this order

Start with k guards at vi

w(X1) = w(v1) + w(u1) ≤ k, w(e1) ≤ w(u1)

move w(u1) searchers along w1
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Contiguous monton. search and progr. connected crusade

Lemma 20: T ′ (every link has vertex of degree 2) and progressive
connected crusade of frontier ≤ k . Monotone contiguous strategy
with the same bound!

Proof:

e1, . . . , ei−1 without recontaminations

ei = (vi , ui ) incident to Xi−1, vi ∈ δ(Xi−1)

Case 1: w(Xi−1) + w(ui ) ≤ k:
Clear link ei by w(ui ) agents move from vi to ui .

Case 2: w(Xi−1) + w(ui ) > k

Not both vertices vi , ui in δ(Xi )

vi ∈ δ(Xi−1). Assume vi ∈ δ(Xi )

deg(vi ) > 2 and deg(ui ) = 2

ui ∈ δ(Xi ) implies link fi 6= ei containing ui has to be
contaminated and ui 6∈ δ(Xi−1)

w(Xi ) = w(Xi−1) + w(ui ) Contradiction!
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Contiguous monton. search and progr. connected crusade

Case 2: w(Xi−1) + w(ui ) > k and not both vertices vi , ui in δ(Xi )

ei

vi

ui

vi ∈ δ(Xi)

w(ui)
ei

vi

ui

w(vi)

ei

vi

ui

w(vi) + k − w(Xi−1) ≥ w(ui)

ui 6∈ δ(Xi)
vi 6∈ δ(Xi)
ui 6∈ δ(Xi)

vi 6∈ δ(Xi)
ui ∈ δ(Xi) 3.

w(Xi ) = w(Xi−1)− w(vi ) + w(ui ) and at least w(vi ) guards at vi .

Move all k − w(Xi−1) free guards to vi .

w(vi ) + k − w(Xi−1) ≥ w(vi ) + w(Xi )− w(Xi−1) ≥ w(ui )
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Contiguous monot. search and progr. connected crusade

Lemma 21: Any contiguous monotone strategy for T ′ can be
translated to a contiguous monotone strategy for T with the same
number k of agents.

Proof:
Let e ′ = (x , y) and e ′′ = (y , z) links stemming extension e.

If q guards move from x to y or z to y , they stay in place in T .

If q guards move from y to x or from y to z , they move from z to
x or from x to z in T , respectively.
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Contiguous monton. search and progr. connected crusade

Lemma 22: Any contiguous monotone strategy for T with k
agents can be translated to a contiguous monotone strategy for T ′

with the same number k of agents.

Proof:
A move along an edge e = (u, v) in T is splitted into two moves
along e ′ and e ′′.

u is kept safe: If the move clears e = (u, v), then q ≥ w(e) have
traversed e.

From the construction q searchers are also enough for
w(e) = w(e ′) = w(e ′′) and the weight w(e) of the intermediate
vertex.
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Contiguous monton. search and progr. connected crusade

Theorem 17: For any weighted tree T there is a monotone
contiguous search strategy with cs(T ) agents where all agents
initially start at the same vertex b.

cs(T ′) ≤ cs(T ) (Theorem 22)

Connected crusade of frontier cs(T ′) in T ′ (Lemma 18)

Monotone contiguous strategy for cs(T ′) in T ′ with start
vertex b (Lemma 20)

Monotone contiguous strategy for cs(T ′) = cs(T ) in T with
start vertex b (Lemma 21)
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Design of a strategy: Example!

Startvertex v and order of the subtrees:

cs(Tv (z)) = max{cs(Tv (z1)), cs(Tv (z2)) + w(z)}
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