Theoretical Aspects of Intruder Search

Course Wintersemester 2015/16 Dynamic strategies on Trees

Elmar Langetepe

University of Bonn

November 3rd, 2015

Corollary 14: Computing a strategy for a tree T of size n that saves at least k vertices can be done in $O(n2^kk)$ time.

- Run above algorithm for $i = 1, \ldots, k$
- Sufficient!

•
$$\sum_{i=1}^{k} i 2^{i} n \le kn \sum_{i=1}^{k} 2^{i} = (2^{k+1} - 2)kn$$

Bound for *k*: Show $k \leq \sqrt{2n}$

Lemma 15: If a vertex at depth *d* is burning in an optimal strategy for an instance of the firefigther problem on trees, at least $\frac{1}{2}(d^2 + d)$ vertices are safe.

Proof:

- Optimal strategy, vertex v at depth d burning
- Guard at v_i in every depth $1, 2, \ldots, d$
- T_{v_i} has size $\geq d i + 1$

•
$$\sum_{i=1}^{d} (d-i+1) = \frac{1}{2}(d^2+d)$$

Bound for *k*: Show $k \leq \sqrt{2n}$

Theorem 16: There is an $O\left(2^{\sqrt{2n}}n^{3/2}\right)$ algorithm for the firefigther problem on a tree of size *n*.

Proof:

- Run the algorithm for $k \leq \sqrt{2n}$: $(n \cdot 2^k \cdot k)$
- Above Lemma: Burning vertex at depth $\sqrt{2n}$, then $n + \sqrt{n/2} > n$ vertices safe? Contradiction!
- All vertices of depth $k = \sqrt{2n}$ has to be safe for an optimal strategy
- Suffices to use this bound!

- Stationary guards vs. dynamic guards!
- NP-hard for general graphs \Rightarrow Trees
- Many different variants: Here Clearing of edges!
- Weights for the Corridors. Weights for the vertices.
- Recontamination, if weight is to small!
- Intruder has maximum speed.

Weighted Graphs G = (V, E)

- Place p guards on a vertex.
- Move r guards along an edge.

The set of all *cleared* edges E_i after step *i* has to be connected!

- Edge weights w(e), vertex weights w(v) with w(v) ≥ w(e) for any e = (v, u) ∈ E
- Recontamination by non-protected paths
- Infinite speed for the Intruder
- Example: Blackboard

Optimal contiguous search strategy

Weighted Tree T = (V, E), search number cs(T)!

Optimal contiguous search strategy

Theorem 17: For any weighted tree T there is a monotone contiguous search strategy with cs(T) agents where all agents initially start at the same vertex b.

Boundary of edge subset!

- $X \subseteq E$
- boundary vertices δ(X):
 Vertices that have vertices incident to X and E \ X

•
$$w(X_i) := \sum_{v \in \delta(X_i)} w(v)$$

• $w(\{e_4, e_5, e_6\}) = 7$ and $w(\{e_2\}) = 10$.

Optimal contiguous search strategy, Crusade definition

•
$$(X_0, X_1, \ldots, X_m)$$
 subsets $X_i \subseteq E$

•
$$X_0 = \emptyset$$
 and $X_m = E$

•
$$|X_i \setminus X_{i-1}| \le 1$$
 for $1 \le i \le m$

- Connected if X_i connected for $1 \le i \le m$
- Frontier: max_{1≤i≤m} w(X_i)
- Progressive: $X_0 \subseteq X_1 \subseteq \cdots \subseteq X_m$ and $|X_i \setminus X_{i-1}| = 1$ for $1 \le i \le m$

Contiguous search and connected crusade

- $cs(T) \leq k$ and a contiguous search!
- X_i set after each step!
- Search step, at most one additional edge, means $|X_i \setminus X_{i-1}| \leq 1$
- X_i not destructed, means $w(X_i) \leq k$.
- X_i connected, because contiguous search
- $X_0 = \emptyset$ and $X_m = E$

Lemma 18: For $cs(T) \le k$ there is a connected crusade of frontier at most k.

Optimal contiguous search strategy

Weighted Tree T = (V, E), search number cs(T)!

Lemma 19: For $cs(T) \le k$ there is a *progressive* connected crusade of frontier at most k.

Connected crusades $C = (X_0, X_1, ..., X_m)$ of frontier at most k Choose one with:

• $\sum_{i=0}^{m} (w(X_i) + 1)$ is minimum.

• Amog all crusade satisfying condition 1. choose one with: $\sum_{i=0}^{m} |X_i|$ is minimum.

Has to exist, show that this is progressive: $|X_i \setminus X_{i-1}| = 1$ for $1 \le i \le m$

Connected crusade: $\{e_1, e_2, e_3, e_4\}$: $|X_i \setminus X_{i-1}| \le 1$ for $1 \le i \le m$ Pogressive con. crusade: $(\emptyset, \{e_1\}, \{e_1, e_2\}, \{e_1, e_2, e_3\}, \{e_1, e_2, e_3, e_4\}),$ $|X_i \setminus X_{i-1}| = 1$ for 1 < i < m, $X_0 \subset X_1 \subset \cdots \subset X_m$ e_3

- Amog all crusade satisfying condition 1. choose one with: $\sum_{i=0}^{m} |X_i|$ is minimum.
 - Assume: $C = (X_0, X_1, \dots, X_m)$ with $|X_i \setminus X_{i-1}| = 0$
 - Take: $C' = (X_0, ..., X_{i-1}, X_{i+1}, ..., X_m)$, Condition 1.!
 - This means $X_i \subseteq X_{i-1}$.
 - $|X_{i+1} \setminus X_{i-1}| \le 1$ from $|X_{i+1} \setminus X_i| \le 1$ and $X_i \subseteq X_{i-1}$,
 - Connected!
 - Can assume: $|X_i \setminus X_{i-1}| = 1$ for $1 \le i \le m!$

•
$$\sum_{i=0}^{m} (w(X_i) + 1)$$
 is minimum.

• Amog all crusade satisfying condition 1. choose one with: $\sum_{i=0}^{m} |X_i|$ is minimum.

• Prove
$$X_i \subseteq X_{i-1}!$$

• Case 1.:
$$w(X_{i-1} \cup X_i) < w(X_i)$$

•
$$C' = (X_0, \dots, X_{i-1}, X_{i-1} \cup X_i, X_{i+1}, \dots, X_m)$$
, Cond. 1.!

- X_i and X_{i-1} connected, $X_{i-1} \cup X_i$ is connected since $|X_i \setminus X_{i-1}| = 1$
- $|X_{i+1} \setminus (X_{i-1} \cup X_i)| \le 1$ since $|X_{i+1} \setminus X_i| = 1$. If $|X_{i+1} \setminus (X_{i-1} \cup X_i)| = 0$ go back to former case!

• Case 2.:
$$w(X_{i-1} \cup X_i) \ge w(X_i)$$

- $\sum_{i=0}^{m} (w(X_i) + 1)$ is minimum.
- Amog all crusade satisfying condition 1. choose one with: $\sum_{i=0}^{m} |X_i|$ is minimum.
 - Prove $X_i \subseteq X_{i-1}!$

• Case 2.:
$$w(X_{i-1} \cup X_i) \ge w(X_i)$$

- Exercise: $w(A \cup B) + w(A \cap B) \le w(A) + w(B)$ link sets A, B
- $w(X_{i-1} \cap X_i) \le w(X_i)$ for $1 \le i \le m$

•
$$C'' = (X_0, \ldots, X_{i-2}, X_{i-1} \cap X_i, X_{i+1}, \ldots, X_m)$$

- Cond. 2.! $|X_{i-1} \cap X_i| \ge |X_{i-1}|$ which gives $X_{i-1} \subseteq X_i$
- $|X_i \setminus (X_i \cap X_{i-1})| = |X_i \setminus X_{i-1}| = 1$ and $|(X_i \cap X_{i-1}) \setminus X_{i-2}| \le |X_{i-1} \setminus X_{i-2}| \le 1$
- Show that C" is connected!!

Progressive connected crusade, frontier at most k

•
$$C'' = (X_0, ..., X_{i-2}, X_{i-1} \cap X_i, X_{i+1}, ..., X_m)$$
 connected?

- Ass. $X_{i-1} \cap X_i$ not connected!
- $\{e\} = X_i \setminus X_{i-1}$ and $W = X_{i-1} \setminus X_i$ and $Z = X_{i-1} \cap X_i$. By assumption $Z = Z' \cup Z''$ where Z' and Z'' do not share a vertex.
- Contrad. T is a tree, $X_{i-1} \cap X_i$ is also connected.

Lemma 19: For $cs(T) \le k$ there is a *progressive* connected crusade with frontier at most k.

- Build strategy from *progressive* connected crusade frontier at most *k*!
- First, double the edges T, T'!

Lemma 20: Let T' be a tree so that every link has at least one vertex of degree 2. If there is a progressive connected crusade of frontier $\leq k$ in T', there is a monotone contiguous search strategy using $\leq k$ guards in T' and the guards can be initially placed at a single vertex v_1 .

Proof: Inductive argument!

- pcc. $C = (X_0, X_1, \dots, X_m)$ frontier $\leq k$
- $e_i = (v_i, u_i) := X_i \setminus X_{i-1}$, this order
- Start with k guards at v_i
- $w(X_1) = w(v_1) + w(u_1) \le k$, $w(e_1) \le w(u_1)$
- move $w(u_1)$ searchers along w_1

Contiguous monton. search and progr. connected crusade

Lemma 20: T' (every link has vertex of degree 2) and progressive connected crusade of frontier $\leq k$. Monotone contiguous strategy with the same bound!

Proof:

- e_1, \ldots, e_{i-1} without recontaminations
- $e_i = (v_i, u_i)$ incident to X_{i-1} , $v_i \in \delta(X_{i-1})$
- Case 1: w(X_{i-1}) + w(u_i) ≤ k: Clear link e_i by w(u_i) agents move from v_i to u_i.

• Case 2:
$$w(X_{i-1}) + w(u_i) > k$$

- Not both vertices v_i , u_i in $\delta(X_i)$
- $v_i \in \delta(X_{i-1})$. Assume $v_i \in \delta(X_i)$
- $\deg(v_i) > 2$ and $\deg(u_i) = 2$
- u_i ∈ δ(X_i) implies link f_i ≠ e_i containing u_i has to be contaminated and u_i ∉ δ(X_{i-1})

•
$$w(X_i) = w(X_{i-1}) + w(u_i)$$
 Contradiction!

Contiguous monton. search and progr. connected crusade

Case 2: $w(X_{i-1}) + w(u_i) > k$ and not both vertices v_i , u_i in $\delta(X_i)$

Lemma 21: Any contiguous monotone strategy for T' can be translated to a contiguous monotone strategy for T with the same number k of agents.

Proof: Let e' = (x, y) and e'' = (y, z) links stemming extension e.

If q guards move from x to y or z to y, they stay in place in T.

If q guards move from y to x or from y to z, they move from z to x or from x to z in T, respectively.

Lemma 22: Any contiguous monotone strategy for T with k agents can be translated to a contiguous monotone strategy for T' with the same number k of agents.

Proof:

A move along an edge e = (u, v) in T is splitted into two moves along e' and e''.

u is kept safe: If the move clears e = (u, v), then $q \ge w(e)$ have traversed e.

From the construction q searchers are also enough for w(e) = w(e') = w(e'') and the weight w(e) of the intermediate vertex.

Theorem 17: For any weighted tree T there is a monotone contiguous search strategy with cs(T) agents where all agents initially start at the same vertex b.

- $cs(T') \le cs(T)$ (Theorem 22)
- Connected crusade of frontier cs(T') in T' (Lemma 18)
- Monotone contiguous strategy for cs(T') in T' with start vertex b (Lemma 20)
- Monotone contiguous strategy for cs(T') = cs(T) in T with start vertex b (Lemma 21)

Design of a strategy: Example!

Startvertex v and order of the subtrees:

990