Theoretical Aspects of Intruder Search Course Wintersemester 2015/16
 Cop and Robber Game Cont./Randomizations

Elmar Langetepe
University of Bonn

November 24th, 2015

Number of cops required, positive result

Theorem 40: For any planar graph G we have $c(G) \leq 3$.
Proof:

- Two cops protect some paths, the third cop can proceed!

Number of cops required, positive result

Lemma 39: Consider a graph G and a shortest path $P=s, v_{1}, v_{2}, \ldots, v_{n}, t$ between two vertices s and t in G, assume that we have two cops. After a finite number of moves the path is protected by the cops so that after a visit of the robber R of a vertex of P the robber will be catched.

- Move cop conto some vertex $c=v_{i}$ of P
- Assuming, r closer to some x in $s, v_{1}, \ldots, v_{i-1}$ and some y in $v_{i+1}, \ldots, v_{n}, t$. Contradiction shortest path from x and y
- $d(x, c)+d(y, c) \leq d(x, r)+d(r, y)$
- Move toward x, finally: $d(r, v) \geq d(c, v)$ for all $v \in P$
- Now robot moves, but we can repair all the time
- r goes to some vertex r^{\prime} and we have $d\left(r^{\prime}, v\right) \geq d(r, v)-1 \geq d(c, v)-1$ for all $v \in P$.
- Some $v^{\prime} \in P$ with $d\left(c, v^{\prime}\right)-1=d\left(r^{\prime}, v^{\prime}\right)$ exists, move to v^{\prime}

Theorem 40: For any planar graph G we have $c(G) \leq 3$.
Proof:
Case 1: All three cops occupy a single vertex c and the robber is located in one component R_{i} of $G \backslash\{c\}$
Case 2: There are two different paths P_{1} and P_{2} from v_{1} to v_{2} that are protected in the sense of Lemma 39 by cops c_{1} and c_{2}. In this case $P_{1} \cup P_{2}$ subdivided G into an interior, I, and an exterior region E. That is $G \backslash\left(P_{1} \cup P_{2}\right)$ has at least two components. W.I.o.g. we assume that R is located in the exterior $E=R_{i}$.

Number of cops required, positive result

Theorem 40: For any planar graph G we have $c(G) \leq 3$.
Case 1 and Case 2

Theorem 40: For any planar graph G we have $c(G) \leq 3$.
Case 1: Number of neighbors!
c one neighbor in R_{i} : Move all cops to this neighbor c^{\prime} and Consider $R_{i+1}=R_{i} \backslash\left\{c^{\prime}\right\}$. Case 1 again.
c more than one neighbor in R_{i} : a and b be two neighbors, $P(a, b)$ a shortest path in R_{i} between a and b. One cop remains in c, another cop protects the path $P(a, b)$ by Lemma 39. Thus $P_{1}=a, c, b$ and $P_{2}=P(a, b)$. Case 2 with $R_{i+1} \subset R_{i}$.

Number of cops required, positive result

Theorem 40: For any planar graph G we have $c(G) \leq 3$.
Case 2:

Theorem 40: For any planar graph G we have $c(G) \leq 3$.
Case 2:
(1) There is a another shortest path $P^{\prime}\left(v_{1}, v_{2}\right)$ in $P_{1} \cup P_{2} \cup R_{i}$ but different from P_{1} and P_{2}. Leaves $P_{1} \cup P_{2}$ at x_{1}, hits $P_{1} \cup P_{2}$ again at x_{2}.
(2) There is no such path! There is a single vertex x of $P_{1} \cup P_{2}$ so that R is in the component behind x. Move all three cops to x. Case 1 again!

Number of cops required, positive result

Shortest path $P^{\prime}\left(v_{1}, v_{2}\right)$ in $P_{1} \cup P_{2} \cup R_{i}$ but different from P_{1} and P_{2}. Leaves $P_{1} \cup P_{2}$ at x_{1}, hits $P_{1} \cup P_{2}$ again at x_{2}.

Let c_{3} protect $P_{3}=v_{1}, \ldots, x_{1}, r_{1}, \ldots, r_{k}, x_{2}, \ldots, v_{2}$ while c_{1} and c_{2} protect $P_{1} \cup P_{2}$.

Case 2 again: c_{3} protects P_{3}, c_{1} or c_{2} the remaining one!

Aspects of randomization

- Examples for the use of randomizations
- Context of decontaminations
- Randomization for a strategy
- Beat the greedy algorithm for trees
- Randomization as part of the variant
- Probability distribution for the root
- Expected number of vertices saved

Beat the greedy approximation

Integer LP formation for trees (Exercise):
Minimize

$$
\sum_{v \in V} x_{v} w_{v}
$$

so that $\quad x_{r}=0=0$

$$
\begin{aligned}
\sum_{v \leq u} x_{v} \leq 1 & : \quad \text { for every leaf } u \\
\sum_{v \in L_{i}} x_{v} \leq 1 & : \quad \text { for every level } L_{i}, i \geq 1 \\
x_{v} & \in\{0,1\}
\end{aligned}
$$

Strategy: Beat the greedy approximation

- opt $_{\text {ILP }}$ optimal solution, opt $_{\text {RLP }}$ fractional solution, $\mathrm{opt}_{I L P} \leq \mathrm{opt}_{R L P}$
- opt ${ }_{R L P}$ in polynomial time!
- Subtree T_{v} with $x_{v}=a \leq 1$ is a-saved, a portion $a \cdot w_{v}$ of the subtree is saved
- v_{1} is ancestor of v_{2} and $x_{v_{1}}=a_{1}$ and $x_{v_{2}}=a_{2}$
- Vertices of $T_{v_{2}}$ are $\left(a_{1}+a_{2}\right)$-saved. The remaining vertices of $T_{v_{1}}$ are only a_{1}-saved.
- Randomized rounding scheme for every level
- Sum of the $x_{v}=a$-values for level i : Probability distribution for choosing v. Shuffle and set x_{v} to 1 .
- Sum up to less than 1: Probability of not choosing a vertex at level i.
- Only problem: double-protections

Strategy: Beat the greedy approximation

- double-protections: Choose vertices on the same path to a leaf! We only use the predecessor! Skip the higher level!
- No such double-protections: The expected approximation value would be indeed 1.
- Intuitive idea: Tree $T_{v_{i}}$ at level i is fully saved by the fractional strategy!
- Worst-case: Fractional strategy has assigned a $1 / i$ fraction to all vertices on the path from r to v_{i}. This gives 1 for $T_{v_{i}}$.
- Probability of saving v_{i} is: $1-(1-1 / i)^{i} \geq 1-\frac{1}{e}$.
- Formal general proof!

Approximation by randomized strategy

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt ${ }_{R L P}$. The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$.

- S_{F} fractional solution for opt $_{\text {RLP }}$
- Probabilistic rounding scheme: S_{I} outcome of this assignment
- Show: Expected protection of S_{I} is larger than $\left(1-\frac{1}{e}\right)$ times the value of S_{F}
- x_{v}^{F} value of x_{v} for the fractional strategy
- x_{v}^{\prime} value $\{0,1\}$ of integer strategy
- $y_{v}=\sum_{u \leq v} x_{u} \in\{0,1\}$ indicate whether v is finally saved
- $y_{v}^{F}=\sum_{u \leq v} x_{u}^{F} \leq 1$ fraction of v saved by fractional strategy

Approximation by randomized strategy

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt ${ }_{R L P}$. The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$.

For $y_{v}=1$ it suffices that one of the predecessor of v was chosen. Let $r=v_{0}, v_{1}, v_{2}, \ldots, v_{k}=v$ be the path from r to v

$$
\operatorname{Pr}\left[y_{v}=1\right]=1-\prod_{i=1}^{k}\left(1-x_{v_{i}}^{F}\right)
$$

Explanation: The probability that v_{2} is safe is
$x_{1}+\left(1-x_{1}\right) x_{2}=1-\left(1-x_{1}\right)\left(1-x_{2}\right)$
The probability that v_{3} is safe is
$1-\left(1-x_{1}\right)\left(1-x_{2}\right)+\left(1-x_{1}\right)\left(1-x_{2}\right) x_{3}=1-\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)$ and so on.

Approximation by randomized strategy

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt ${ }_{R L P}$. The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$.

$$
\begin{aligned}
\operatorname{Pr}\left[y_{v}=1\right] & =1-\prod_{i=1}^{k}\left(1-x_{v_{i}}^{F}\right) \\
& \geq 1-\left(\frac{\sum_{i=1}^{k}\left(1-x_{v_{i}}^{F}\right)}{k}\right)^{k}=1-\left(\frac{k-\sum_{i=1}^{k} x_{v_{i}}^{F}}{k}\right)^{k} \\
& =1-\left(\frac{k-y_{v}^{F}}{k}\right)^{k} \\
& =1-\left(1-\frac{y_{v}^{F}}{k}\right)^{k} \geq 1-e^{-y_{v}^{F}} \geq\left(1-\frac{1}{e}\right) y_{v}^{F}
\end{aligned}
$$

$\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} \cdot x_{2} \cdots x_{n}}$

Approximation by randomized strategy

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt ${ }_{R L P}$. The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$.

$$
\mathbf{E}\left(\left|S_{l}\right|=\sum_{v \in V} \operatorname{Pr}\left[y_{v}=1\right] \geq\left(1-\frac{1}{e}\right) \sum_{v \in V} y_{v}^{F}=\left(1-\frac{1}{e}\right)\left|S_{F}\right| .\right.
$$

Randomization in variants of the problem

- $G=(V, E)$ fixed number k of agents
- k-surviving rate, $s_{k}(G)$, is the expectation of the proportion of vertices saved
- Any vertex is root vertex with the same probability
- Classes, C, of graphs G : For constant $\epsilon, s_{k}(G) \geq \epsilon$
- Given $G, k, v \in V$ let: $\mathrm{sn}_{k}(G, v)$:number of vertices that can be protected by k agents, if the fire starts at v
- $\frac{1}{|V|} \sum_{v \in V} \mathrm{sn}_{k}(G, v) \geq \epsilon|V|$
- Class C : let the minimum number k that guarantees $s_{k}(G)>\epsilon$ for any $G \in C$ be denoted as the firefighter-number, $f f n(C)$, of C.

