Theoretical Aspects of Intruder Search

Course Wintersemester 2015/16 Cop and Robber Game Cont./Randomizations

Elmar Langetepe

University of Bonn

November 24th, 2015

Theorem 40: For any planar graph G we have $c(G) \leq 3$.

Proof:

• Two cops protect some paths, the third cop can proceed!

Lemma 39: Consider a graph G and a shortest path $P = s, v_1, v_2, \ldots, v_n, t$ between two vertices s and t in G, assume that we have two cops. After a finite number of moves the path is protected by the cops so that after a visit of the robber R of a vertex of P the robber will be catched.

- Move cop c onto some vertex $c = v_i$ of P
- Assuming, r closer to some x in s, v_1, \ldots, v_{i-1} and some y in v_{i+1}, \ldots, v_n, t . Contradiction shortest path from x and y
- $d(x,c) + d(y,c) \leq d(x,r) + d(r,y)$
- Move toward x, finally: $d(r, v) \ge d(c, v)$ for all $v \in P$
- Now robot moves, but we can repair all the time
- r goes to some vertex r' and we have $d(r', v) \ge d(r, v) 1 \ge d(c, v) 1$ for all $v \in P$.
- Some $v' \in P$ with d(c, v') 1 = d(r', v') exists, move to v'

Theorem 40: For any planar graph G we have $c(G) \leq 3$.

Proof:

- Case 1: All three cops occupy a single vertex c and the robber is located in one component R_i of $G \setminus \{c\}$
- Case 2: There are two different paths P_1 and P_2 from v_1 to v_2 that are protected in the sense of Lemma 39 by cops c_1 and c_2 . In this case $P_1 \cup P_2$ subdivided G into an interior, I, and an exterior region E. That is $G \setminus (P_1 \cup P_2)$ has at least two components. W.l.o.g. we assume that R is located in the exterior $E = R_i$.

Theorem 40: For any planar graph G we have $c(G) \leq 3$.

Case 1 and Case 2

Theorem 40: For any planar graph G we have $c(G) \leq 3$.

Case 1: Number of neighbors!

c one neighbor in R_i : Move all cops to this neighbor c' and Consider $R_{i+1} = R_i \setminus \{c'\}$. Case 1 again.

c more than one neighbor in R_i : a and b be two neighbors, P(a,b) a shortest path in R_i between a and b. One cop remains in c, another cop protects the path P(a,b) by Lemma 39. Thus $P_1=a,c,b$ and $P_2=P(a,b)$. Case 2 with $R_{i+1}\subset R_i$.

Theorem 40: For any planar graph G we have $c(G) \leq 3$.

Case 2:

Theorem 40: For any planar graph G we have $c(G) \leq 3$.

Case 2:

- **●** There is a another shortest path $P'(v_1, v_2)$ in $P_1 \cup P_2 \cup R_i$ but different from P_1 and P_2 . Leaves $P_1 \cup P_2$ at x_1 , hits $P_1 \cup P_2$ again at x_2 .
- ② There is no such path! There is a single vertex x of $P_1 \cup P_2$ so that R is in the component behind x. Move all three cops to x. Case 1 again!

Shortest path $P'(v_1, v_2)$ in $P_1 \cup P_2 \cup R_i$ but different from P_1 and P_2 . Leaves $P_1 \cup P_2$ at x_1 , hits $P_1 \cup P_2$ again at x_2 .

Let c_3 protect $P_3 = v_1, \dots, x_1, r_1, \dots, r_k, x_2, \dots, v_2$ while c_1 and c_2 protect $P_1 \cup P_2$.

Case 2 again: c_3 protects P_3 , c_1 or c_2 the remaining one!

Aspects of randomization

- Examples for the use of randomizations
- Context of decontaminations
- Randomization for a strategy
- Beat the greedy algorithm for trees
- Randomization as part of the variant
- Probability distribution for the root
- Expected number of vertices saved

Beat the greedy approximation

Integer LP formlation for trees (Exercise):

Minimize
$$\sum_{v \in V} x_v w_v$$
 so that
$$x_r = 0 = 0$$

$$\sum_{v \leq u} x_v \leq 1 \qquad : \text{ for every leaf } u$$

$$\sum_{v \in L_i} x_v \leq 1 \qquad : \text{ for every level } L_i, i \geq 1$$

$$x_v \in \{0,1\} : \forall \, v \in V$$

Strategy: Beat the greedy approximation

- $\mathsf{opt}_{\mathit{ILP}}$ optimal solution, $\mathsf{opt}_{\mathit{RLP}}$ fractional solution, $\mathsf{opt}_{\mathit{ILP}} \leq \mathsf{opt}_{\mathit{RLP}}$
- opt_{RIP} in polynomial time!
- Subtree T_v with $x_v = a \le 1$ is a-saved, a portion $a \cdot w_v$ of the subtree is saved
- v_1 is ancestor of v_2 and $x_{v_1} = a_1$ and $x_{v_2} = a_2$
- Vertices of T_{v_2} are $(a_1 + a_2)$ -saved. The remaining vertices of T_{v_1} are only a_1 -saved.
- Randomized rounding scheme for every level
- Sum of the $x_v = a$ -values for level i: Probability distribution for choosing v. Shuffle and set x_v to 1.
- Sum up to less than 1: Probability of not choosing a vertex at level i.
- Only problem: double-protections

Strategy: Beat the greedy approximation

- *double-protections*: Choose vertices on the same path to a leaf! We only use the predecessor! Skip the higher level!
- No such *double-protections*: The expected approximation value would be indeed 1.
- Intuitive idea: Tree T_{v_i} at level i is fully saved by the fractional strategy!
- Worst-case: Fractional strategy has assigned a 1/i fraction to all vertices on the path from r to v_i . This gives 1 for T_{v_i} .
- ullet Probability of saving v_i is: $1-(1-1/i)^i \geq 1-rac{1}{e}$.
- Formal general proof!

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt_{RLP} . The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$.

- S_F fractional solution for opt $_{RLP}$
- \bullet Probabilistic rounding scheme: S_I outcome of this assignment
- ullet Show: Expected protection of S_I is larger than $\left(1-rac{1}{e}
 ight)$ times the value of S_F
- x_v^F value of x_v for the fractional strategy
- x_v^I value $\{0,1\}$ of integer strategy
- $y_v = \sum_{u \le v} x_u \in \{0, 1\}$ indicate whether v is finally saved
- $y_v^F = \sum_{u \leq v} x_u^F \leq 1$ fraction of v saved by fractional strategy

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt_{RLP} . The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$.

For $y_v = 1$ it suffices that one of the predecessor of v was chosen. Let $r = v_0, v_1, v_2, \ldots, v_k = v$ be the path from r to v

$$\Pr[y_v = 1] = 1 - \prod_{i=1}^k (1 - x_{v_i}^F).$$

Explanation: The probability that v_2 is safe is

$$x_1 + (1 - x_1)x_2 = 1 - (1 - x_1)(1 - x_2)$$

The probability that v_3 is safe is

$$1 - (1 - x_1)(1 - x_2) + (1 - x_1)(1 - x_2)x_3 = 1 - (1 - x_1)(1 - x_2)(1 - x_3)$$

and so on.

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt_{RLP} . The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$.

$$\begin{aligned} \Pr[y_{v} = 1] &= 1 - \prod_{i=1}^{k} (1 - x_{v_{i}}^{F}) \\ &\geq 1 - \left(\frac{\sum_{i=1}^{k} (1 - x_{v_{i}}^{F})}{k}\right)^{k} = 1 - \left(\frac{k - \sum_{i=1}^{k} x_{v_{i}}^{F}}{k}\right)^{k} \\ &= 1 - \left(\frac{k - y_{v}^{F}}{k}\right)^{k} \\ &= 1 - \left(1 - \frac{y_{v}^{F}}{k}\right)^{k} \geq 1 - e^{-y_{v}^{F}} \geq \left(1 - \frac{1}{e}\right) y_{v}^{F}. \end{aligned}$$

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt_{RLP} . The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$.

$$\mathbf{E}(|S_I| = \sum_{v \in V} \mathbf{Pr}[y_v = 1] \ge \left(1 - \frac{1}{e}\right) \sum_{v \in V} y_v^F = \left(1 - \frac{1}{e}\right) |S_F|.$$

Randomization in variants of the problem

- G = (V, E) fixed number k of agents
- k-surviving rate, $s_k(G)$, is the expectation of the *proportion* of vertices saved
- Any vertex is root vertex with the same probability
- Classes, C, of graphs G: For constant ϵ , $s_k(G) \ge \epsilon$
- Given G, k, v ∈ V let: sn_k(G, v):number of vertices that can be protected by k agents, if the fire starts at v
- $\frac{1}{|V|} \sum_{v \in V} \operatorname{sn}_k(G, v) \ge \epsilon |V|$
- Class C: let the minimum number k that guarantees $s_k(G) > \epsilon$ for any $G \in C$ be denoted as the firefighter-number, ffn(C), of C.

