
1.3. Applications 17

We now prove that the probability that the algorithm indeed outputs a minimum cut
is bounded below.

Theorem 1.14. The algorithm Contract always outputs a cut. With a probability of
at least 2

n(n−1) , this cut is a minimum cut.

Proof. To see that the output S is always a cut, observe that a label can never be
empty, and that it cannot be V as long as there are at least two nodes. We can say
something more about the multigraphs that the algorithm creates. Recall that the
degree of a node v ∈ V is the number of edges e = {x, y} ∈ E with v ∈ {x, y}. For
any Gi, i ∈ {0, . . . , n − 2}, the degree of a node v ∈ Vi is equal to the number of
edges that leave the cut that the label of v represents. In other words, the degree of v
is always |δ(`(v))|. Formally, this statement can be shown by induction. We observe
that the statement is true for G0: Then the label of v is just {v}, and the value of
this cut is exactly the degree of v. Whenever we merge two vertices u and v, we keep
exactly those edges that have one endpoint in the label sets `(u) and `(v) and the
other endpoint outside. Exactly these edges are cut by `(u) ∪ `(v).

There can be many minimum cuts in G, but that is not guaranteed, so we don’t want
to consider multiple minimum cuts in our analysis. Instead we want to compare S
to a fixed minimum cut. We let S∗ be an arbitrary optimal solution and now always
compare to this solution. Let C∗ = δ(S∗) be the edges that are cut by S∗.

If the algorithm never contracts an edge from C∗, then it outputs C∗ and thus succeeds.
We observe that the probability that it fails in the first iteration is |C∗|/|E0|. So in
order to see that this probability cannot be arbitrarily high, we need to know something
about the number of edges in G0.

We have the following insight. If a vertex in G0 has degree d, then the cut {v} has
value d as we observed already. So if S∗ is a minimum cut, then all vertices have a
degree of at least |C∗|, because otherwise, there would be a better cut than S∗. We
can now use a fact about graphs. If one sums up the degrees of all nodes, then every
edge is counted exactly twice, thus the sum is 2 · |E|. That implies the following:

Fact 1.15. If every node in a graph G has degree at least d, then the graph has at least
(n · d)/2 edges.

We have argued that every vertex in G0 has degree ≥ |C∗|. Thus, Fact 1.15 says
that G0 has at least (n · |C∗|)/2 edges. We can now bound the probability that the
algorithm makes a mistake in the first iteration by

|C∗|
|Ei−1|

≤ |C∗|
(n · |C∗|)/2 = 2

n
.

Let Ai be the event that the algorithm contracts a good edge in iteration i, i.e. an
edge that is not in C∗. We have just shown that Pr(A1) ≥ 1−Pr(Ā1) = 1− 2

n
. The

algorithm succeeds if Ai occurs for all i ∈ {1, . . . , n − 2}, i.e. the algorithm always
contracts an edge that is not in C∗. We have a similar situation as when we analyzed

18 1. Discrete Event Spaces and Probabilities

dependent runs of our polynomial tester. The success probability of the Contract
algorithm is:

Pr(A1 ∩ . . . ∩ An−2) = Pr(A1) ·Pr(A2 | A1) · . . . ·Pr(An−1 | A1 ∩ . . . ∩ An−3)

where we use the definition of conditional probability. If we pick good edges in the
first i− 1 iterations, then there are still |C∗| bad edges in iteration i, even though the
total number of edges decreased. More precisely, the probability to choose an edge
from C∗ if we never chose an edge from C∗ before is

Pr(Āi | A1 ∩ . . . ∩ Ai−1) = |C∗|
|Ei−1|

.

Now we need to show that Ei−1 still contains enough edges. So far, we only showed
that |E0| is large. However, we can show a lower bound on |Ei−1| in a similar way. We
observed in the beginning of the proof that the degree of every vertex in Gi is exactly
the value of the cut that we get from the label `(v). We know that no cut can cut
less than |C∗| edges. Thus, the degree of every node in Gi−1 is still at least |C∗|. The
number of nodes in Gi−1 is n − (i − 1) because we contracted i − 1 edges. Thus, we
know that |Ei−1| ≥ |C∗| · (n− i+ 1)/2 if we again use Fact 1.15. So we now know that

Pr(Āi | A1 ∩ . . . ∩ Ai−1) = |C∗|
|Ei−1|

≤ |C∗|
|C∗| · (n− i+ 1)/2 = 2

n− i+ 1 .

We can now compute

Pr(Ai | A1 ∩ . . . ∩ Ai−1) = 1−Pr(Āi | A1 ∩ . . . ∩ Ai−1) = 1− 2
n− i+ 1 = n− i− 1

n− i+ 1 .

Luckily, when we multiply the different terms, we observe that a lot of terms cancel
out. We get:

Pr(Algo Contract succeeds)
≥ Pr(Algo Contract outputs S∗)
= Pr(A1 ∩ . . . ∩ An−2) = Pr(A1) ·Pr(A2 | A1) · . . . , ·Pr(An−1 | A1 ∩ . . . ∩ An−3)

≥
(
n− 2
n

)
·
(
n− 3
n− 1

)
·
(
n− 4
n− 2

)
· . . . ·

(
4
6

)
·
(

3
5

)
·
(

2
4

)
·
(

1
3

)

= 2
n(n− 1)

That shows the theorem.

A success probability of roughly 1/n2 does not look impressive. However, we can
increase the success probability by independent runs as we did before. Assume that
we repeat the algorithm n2 times, and return the best solution that we found. Then
the output is not a minimum cut if no run found a minimum cut. Thus, the probability
that the algorithm fails is at most

n2∏
i=1

Pr(run i fails) =
n2∏
i=1

(
1− 2

n(n− 1)

)
≤

n2∏
i=1

(
1− 2

n2

)
=
(1− 2

n2

)n2
2
2

≤
(

1
e

)2

= 1
e2 .

1.3. Applications 19

For the last step, we used the useful inequality (1− t
x
)x ≤ 1

et
which holds for x, t ∈ R

with x ≥ 1 and |t| ≤ x (see 3.6.2 in [Mit70]). The failure probability is now 1/e2,
which is less than 0.14. We can decrease it to any given δ by increasing the number
of independent runs appropriately, as we did for the polynomial tester.

The FastCut algorithm Now we discuss an improvement of the Contract algo-
rithm that we call FastCut. It was was published by Karger and Stein in [KS96]. The
following pictures show snapshots (G0, G3 and G5) of an example run of the Contract
algorithm. The dashed edges are contracted in the steps that happen between the
pictures.
1 2

3 4

5 6

7 8

1,2,3,4
5 6

7 8

1,2,3,4 5,6,7 8

An optimal solution is {1, 2, 3, 4} which cuts the two bold edges C∗. We observe that
in G0, there are 14 edges in total, and the probability to choose one of the two bold
edges is only 1/7. However, after contracting five edges not in C∗, the example run
obtains G5 with only five edges. Now the probability to contract an edge from C∗ is
2/5. Additionally, the probability to get to G5 is already small because the algorithm
had to make five good choices already. The failure probability gets higher and higher
the longer the Contract algorithm runs.

We also see this effect if look at the proof of Theorem 1.14 again. Assume that we
stop the Contract algorithm when then graph has t nodes left, i.e. at Gn−t. Then the
probability that the algorithm contracted no edge from C∗ is

Pr(A1 ∩ . . . ∩ An−t) = Pr(A1) ·Pr(A2 | A1) · . . . , ·Pr(An−t | A1 ∩ . . . ∩ An−t+1)

≥
(
n− 2
n

)
·
(
n− 3
n− 1

)
·
(
n− 4
n− 2

)
· . . . ·

(
t+ 2
t+ 4

)
·
(
t+ 1
t+ 3

)
·
(

t

t+ 2

)
·
(
t− 1
t+ 1

)

= t(t− 1)
n(n− 1) .

We see that the bound gets very small when the number of remaining nodes is small,
e.g. for t = 2, which matches the original Contract algorithm. The key observation is
that we can reduce the number of nodes significantly, for example to around (3/4)n,
without having a high danger of failure: For t = 1 + d(3/4)ne, the success probability
is still bounded below by

t(t− 1)
n(n− 1) ≥

(t− 1)2

n2 ≥ (3/4)2n2

n2 = 9
16 ≥

1
2

The value of t can be made a little smaller. For t = 1 + dn/
√

2e ≈ 0.7n, we get

t(t− 1)
n(n− 1) ≥

(t− 1)2

n2 ≥ n2

√
22
n2

= 1
2

20 1. Discrete Event Spaces and Probabilities

Setting t = 1 + dn/
√

2e will turn out beneficial for the running time, so we choose this
value. The algorithm Contract(G, t) is the same as Contract(G) except that the 2 in
step 2 is replaced by t, that step 6 is deleted and that the algorithm returns the current
graph G instead of a cut. We just argued that the probability that Contract(G, t)
never contracts an edge from C∗ is at least 1/2 for t = 1 + dn/

√
2e.

The idea behind the algorithm FastCut(G) is to include the repetitions into the algo-
rithm instead of simply repeating Karger’s Contract(G) algorithm as a whole. This
makes sense because the failure probability increases during the algorithm. Entangling
the repetitions with the algorithm opens the possibility to repeat the more dangerous
steps more often than the safer steps when the graph still has many edges. The al-
gorithm uses Contract(G, t) as a subroutine. It uses two independent calls to this
procedure to reduce G to graphsH1 andH2 with 1+dn/

√
2e nodes. Then it recursively

solves the minimum cut problem first on H1 and second on H2 by calling FastCut(H1)
and FastCut(H2), the better result is then output. Observe that each recursive call
starts with two independent reduction steps. Thus, in the first level of the recursion,
the previously computed H1 is twice reduced to roughly 70 % of its nodes, which is
49% of the original number of nodes. The deeper we are in the recursion tree, the more
independent reduced graphs are computed in different branches. When the number
of nodes n falls below 7, then 1 + dn/

√
2e is no longer smaller than n (observe that

1 + d6/
√

2e ≥ 1 + d4.24e = 6). When the recursion reaches this point, the algorithm
simply solves the problem optimally. For graphs with less than 7 nodes, this can be
done in constant time.

FastCut(G = (V,E))

1. if n := |V | ≥ 7
2. Set t := 1 + dn/

√
2e

3. H1 = Contract(G, t); H2 = Contract(G, t)
4. S1 = FastCut(H1); S2 = FastCut(H2)
5. if |δ(S1)| ≤ |δ(S2)| then
6. return S1

7. else
8. return S2

9. else
10. Compute an optimal solution S by enumerating all solutions
11. return S

Since the algorithm is recursive, determining its running time requires the analysis
of a recurrence. Let T (n) be the running time for a graph with n nodes. We know
that there is a constant c > 0 such that Contract(G, t) needs at most c · n2 time.
Thus, FastCut(G) spends at most 2c · n2 time for the calls to Contract(G, t). Aside
from that, all steps need some constant c′ > 0 time, except for the recursive calls.
When n < 7, then the running time is bounded by some constant c′′′. We get that the

1.3. Applications 21

running time is bounded by the following recurrence:

T (n) ≤

c′′′ n < 7
2 · T (dn/

√
2e) + 2cn2 + c′ n ≥ 7

Solving this recurrence is a standard task that we leave as an exercise.

Lemma 1.16. The running time of algorithm FastCut(G) is O(n2 log n).

This is a much better bound than the running time bound we got for the Contract
algorithm. Now the important part is to show that the FastCut algorithm has a good
success probability.

