Discrete and Computational Geometry, SS 14
 Exercise Sheet " 3 ": Randomized Algorithms for Geometric Structures University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Tuesday 6th of May, 14:00 pm. There will be a letterbox in the LBH building.
- You may work in groups of at most two participants.
- Please contact Hilko Delonge, hilko.delonge@uni-bonn.de, if you want to participate and have not yet signed up for one of the exercise groups.
- If you are not yet subscribed to the mailing list, please do so at https://lists.iai.uni-bonn.de/mailman/listinfo.cgi/lc-dcgeom

Exercise 1: Average Complexity of Sorting

Given a set N of n real numbers, please analyze the average complexity for the following sorting algorithms over all the n ! permutation sequences of N.

- Insertion Sort
- Merge Sort
- Quick Sort (always select the first element)

Exercise 2: Trapezoidal Decomposition

(4 Points)
Given a set N of n line segments with a total number k of intersections in the plane, let $S_{1}, S_{2}, \ldots, S_{n}$ be a random sequence of N, and let N^{i} be $\left\{S_{1}, S_{2}, \ldots, S_{i}\right\}$. Please prove the following

- The vertical trapezoidal decomposition $H(N)$ of N has $O(n+k)$ trapezoids (faces) even if more than two line segments can intersects at the same point.
- The expected number of trapezoids in $H\left(N^{i}\right)$ is $O\left(i+k i^{2} / n^{2}\right)$. (Hint: the expected number of intersections)

Exercise 3: Triangulations

(4 Points)
Given a set N of n points in the plane, a triangulation $T(N)$ of N is a maximal planar straight-light graph, i.e., every edge is a straight-line segment, and no edge can be added to main the planarity. Let $S_{1}, S_{2}, \ldots, S_{n}$ be a random sequence of N, and let N^{i} be $\left\{S_{1}, S_{2}, \ldots, S_{i}\right\}$. Please develop a randomized algorithm to construct $T(N)$ by computing $T\left(N^{3}\right), T\left(N^{4}\right), \ldots, T\left(N^{n}\right)$ iteratively using the conflict lists. In other words, for $i \geq 3$, obtain $T\left(N^{i+1}\right)$ from $T\left(N^{i}\right)$ by adding S_{i+1}.

1. Describe the insertion of S_{i+1}
2. Define a conflict relation between a triangle in $H\left(N^{i}\right)$ and a point in $N \backslash N^{i}$
3. Prove the expected cost of inserting S^{i+1} to be $O\left(\frac{n}{i+1}\right)$ and the expected cost of construction $T(N)$ to be $O(n \log n)$
