2. Trapezoidal decomposition
\boldsymbol{N} : a set of \boldsymbol{n} line segments (possibly unbounded)
Vertical Trapezoidal Decomposition $\boldsymbol{H}(\boldsymbol{N})$ of N

- Pass a vertical attachment through every endpoint or point of intersection
- Each vertical attachement extends upwards and downwards until it hit another segment or if no such segment exist, it extends to infinity

Properties of $\boldsymbol{H}(\boldsymbol{N})$

- Each cell is called a trapezoid and consists of at most 4 edges (either triangle or quadrilateral)
- Each cell is defined by at most four line segments

The Sorting Problem:
Find the vertical trapezoidal decomposition $H(N)$
The Search Problem:
Associate a search structure $\widetilde{H}(N)$ with $H(N)$, so that for a give query point q, locating which trapezoid of $H(N)$ it belongs to is efficient

Randomized Incremental Construction:

- Generate a random seqeuence $S_{1}, S_{2}, \ldots, S_{n}$ of N
- Construction $H(N)$ by iteratively adding $S_{1}, S_{2}, \ldots, S_{n}$, i.e., computing $H\left(N^{0}\right), H\left(N^{1}\right), \ldots, H\left(N^{n}\right)$ iteratively, where $N^{0}=\emptyset$ and $N^{i}=\left\{S_{j} \mid\right.$ $1 \leq j \leq i\}$

2.1 Conflict List

Assume $\boldsymbol{H}\left(\boldsymbol{N}^{i}\right)$ are avaiable
Conflict relations are defined between trapezoids of $H\left(N^{i}\right)$ and endpoints of line segments of $N \backslash N^{i}$

- For each trapezoid of $H\left(N^{i}\right)$, store the endpoints of line segments of $N \backslash N^{i}$ located in it
- For each endpoint of $N \backslash N^{i}$, store the trapzezoid of $H\left(N^{i}\right)$ to which it belongs

Adding $S=S^{i+1}$ to obtain $H\left(N^{i+1}\right)$

1. Find out the trapezoid including an endpoint p of S^{i+1}
2. Travel from p to trace out all the trapezoid of $H\left(N^{i}\right)$ intersecting S
3. Spilt all the traced trapezoids by S
4. Combine adjacent trapezoids whose upper and lower edges are adjacent to the same segments

Before Inserting S

Merge (e.g., merging σ_{1} and σ_{2} into σ)

How to trace $R_{0}, R_{1}, \ldots, R_{j}$ of $H\left(N^{i}\right)$ intersecting S
Let f be the current traced trapezoid during the travel

- Traverse the boundary of f to find the exit point
- Time proportional to face-length (f), which is number of vertices of f in $H\left(N^{i}\right)$

How to split an trapezoid f

- If S intersect the upper or lower side of f, raise a vertical attachment from the intersection within f
- If an endpoint of S is inside f, raise a vertical attachement from the endpoint within f
- At most four new trapezoid

Why and How to Merge

- Two new trapezoids from difference trapezoids in $H\left(N^{i}\right)$ may belong to the same trapezoid in $H\left(N^{i+1}\right)$
- If two adajcent new trapezoids share the same top and bottom segments, merging them takes $O(1)$ time

g_{1} and g_{2} belong to f_{1} and f_{2}, respectively, and will be merged

Proposition 2.1

Once we know the trapezoid in $H\left(N^{i}\right)$ containing one endpoint of $S=S^{i+1}, H\left(N^{i}\right)$ can be updated to $H\left(N^{i+1}\right)$ in time proportional to \sum_{f} face-length (f), where f ranges over all trapezoids in $H\left(N^{i}\right)$ intersecting S.

How to find the starting trapezoid

- Conflict Lists
- $O(1)$ time by the "edge" from an endpoint of S to the conflicted trapezoid

How to update conflict list
For a trapezoid $f, L(f)$ is endpoints of $N \backslash N^{i}$ in f, and $l(f)$ is $|L(f)|$

- Split: If f is split into $f_{1}, \ldots, f_{i}, i \leq 4$, for each point $p \in L(f)$, decide f_{i} which p belongs to in total $O(l(f))$ time
- Merge: $O(1)$ time

Proposition 2.2

The cost of updating conflict lists if $O\left(\sum_{f} l(f)\right)$, where f ranges over all trapezoids in $H\left(N^{i}\right)$ intersecting S and $l(f)$ denotes the conflict size of f.

Backward Analysis for Inserting S

$$
\begin{aligned}
& \text { Originally: adding } S \text { into } H\left(N^{i}\right) \\
& O\left(\sum_{f} \text { face-length }(f)+l(f)\right)
\end{aligned}
$$

where f ranges over all trapezoids in $H\left(N^{i}\right)$ intersecting S

Now: removing S from $H\left(N^{i+1}\right)$
$O\left(\sum_{g}\right.$ face-length $\left.(g)+l(g)\right)$
where g ranges over all trapezoids in $H\left(N^{i+1}\right)$ adjacent to S

Since $S_{1}, S_{2}, \ldots, S_{n}$ is a randon sequence of N, each line segment in N^{i+1} is equally likely to be S.

Expected cost is proportional to

$$
\frac{1}{i+1} \sum_{S \in N^{i+1}} \sum_{g}(\text { face-length }(g)+l(g))
$$

where g ranges over all trapezoids in $H\left(N^{i+1}\right)$ adajcent to S
It equals to $\frac{n-i+\left|H\left(N^{i+1}\right)\right|}{i+1}=O\left(\frac{n+k_{i+1}}{i+1}\right)$
where g denotes the number of intersection among the segments in N^{i+1} and $\left|H\left(N^{i+1}\right)\right|$ denotes the total size of $H\left(N^{i+1}\right)$

because

- Each trapezoid in $H\left(N^{i+1}\right)$ is adjacent to at most four segments in N^{i+1},
$\rightarrow \sum_{S \in N^{i+1}} \sum_{g}$ face-length $(g) \leq 4\left|H\left(N^{i+1}\right)\right|$
- Total conflicts $\sum_{S \in N^{i+1}} \sum_{g} l(g)$ is $2(n-i)$
- $\left|H\left(N^{i+1}\right)\right|=O\left(i+1+k_{i+1}\right)$, where k_{i+1} is the expected number of intersections among N^{i+1}

Lemma 2.1:

Fix $j \geq 0$, the expected value of k_{j}, assuming that N^{j} is a random sample of N of size j, is $O\left(k j^{2} / n^{2}\right)$

Theorem 2.1

A trapezoidal decomposition formed by n segments in the plane can be constructed in $O(k n \log n)$ expected time. Here k denotes the total number of intersections among the n segments

$$
\begin{aligned}
& E\left[\sum_{i=0}^{n-1} O\left(\frac{n+k_{i+1}}{i+1}\right)\right]=\sum_{i=0}^{n-1} E\left[O\left(\frac{n+k_{i+1}}{i+1}\right)\right] \\
& \left.=\sum_{i=0}^{n-1} O\left(\frac{n+k i^{2} / n^{2}}{i+1}\right)\right]=\left(\sum_{i=0}^{n-1} \frac{n}{i+1}\right)+\left(\sum_{i=0}^{n-1} k i^{2} / n^{2}\right)
\end{aligned}
$$

$$
=O(n \log n+k)
$$

Two questions for this randomized incremental construction based on conflict lists

- How about search structure: locate a query point in a trapezoid of $H(N)$
- Not a on-line algorithm because the conflict lists depend on $N \backslash N^{i}$

2.2 History Graph

On-Line Algorithm and Search Structure

- Recall Random Binary Tree of Quick-Sort
- Killer and Creator
- All trapezoids in $H\left(N^{i}\right) \backslash H\left(N^{i+1}\right), S^{i+1}$ is their killer
- All trapezoids in $H\left(N^{i+1}\right) \backslash H\left(N^{i}\right), S^{i+1}$ is their creator
history $(i)\left(=\widetilde{H}\left(N^{i}\right)\right)$ is a directed graph $G(V, E)$
- V : all trapezoids appeared in $H\left(N^{0}\right), H\left(N^{1}\right), \ldots, H\left(N^{i}\right)$
- E : an arc connectes u to v if
- The killer of v is the creator of u, i.e., the insertion of S kills u and creates v.
- v and u intersect each other
- u is called a parent of v, and v is called a child of u.

Properties of $\operatorname{history}(i)\left(=\widetilde{H}\left(N^{i}\right)\right)$

- Its leaves form $H\left(N^{i}\right)$
- $H\left(N^{0}\right)$ is the only vertex without in-going edges and called the root
- It is an acyclic graph
- Each node has at most 4 out-going edges
- If a point p is contained in a trapezoid v, there is a path from the root to v along which each trapezod contains p

$\widetilde{H}\left(N^{0}\right)$

$\widetilde{H}\left(N^{1}\right)$

$\widetilde{H}\left(N^{2}\right)$

Adding S^{i+1} into $H\left(N^{i}\right)$ through $\widetilde{H}\left(N^{i}\right)$

1. Locating an endpoint p of S^{i+1} by $\widetilde{H}\left(N^{i}\right)$

- Starting from the root until a leaf is reached, check which child contains p and search the child
(hen

2. Trace out all trapezoids intersecting S as we did before by an auxiliary structure:

- Each leaf of $\widetilde{H}\left(N^{i}\right)$ stores its adjacent trapezoids in $H\left(N^{i}\right)$

3. Build new edges between trapezoids in $H\left(N^{i}\right) \backslash H\left(N^{i+1}\right)$ between trapezoids in $H\left(N^{i+1}\right) \backslash H\left(N^{i}\right)$

- Split: If a trapezoid f is split into, $g_{1}, \ldots, g_{j}, j \leq 4$, for $1 \leq l \leq j$, there is an arc from f to g_{l}.
- Merge: If g_{1} and g_{2} are merged into g, for each parent f of g_{1} and g_{2}, there is an arc from f to g

Lemma 2.2

Locating a point p in a trapezoid δ in $H\left(N^{i}\right)$ takes $O(\log i)$ expected time using $\widetilde{H}\left(N^{i}\right)$

- Since each trapezoid has at most 4 childen, the time of location is proportional to the number of trapezoids in $\widetilde{H}\left(N^{i}\right)$ which contain p
- We charge an involved trapezoid to its creator. In other words, S^{j} is charged if and only if p is contained in an trapezoid in $H\left(N^{j}\right)$ adjacent to S^{j}.
- Since a trapezoid is adjacent to at most 4 segments and $S_{1}, S_{2}, \ldots, S_{n}$ is a random sequence of N, the probability in which S^{j} will be charged is at most $4 / j$.
- Expected time of locating p in a trapezoid δ in $H\left(N^{i}\right)$ is at most $1+\sum_{j=1}^{i} 4 / j=O(\log i)$

Lemma 2.3

Inserting S^{i+1} into $\widetilde{H}\left(N^{i}\right)$ takes $O\left(\log i+k(i+1) / n^{2}\right)$ expected time

- Step 1 takes $O(\log i)$ expected time
- Step 2 and Step 3 take time proportional to the number of intersection between $H\left(N^{i}\right)$ and S^{i+1} (as we do with conflict lists)
- The expected number of intersections between $H\left(N^{i}\right)$ and S^{i+1} is $O\left(k(i+1) / n^{2}\right)$
- The expected number of intersection between N^{i+1} is $O(k(i+$ $\left.1)^{2} / n^{2}\right)$.

Theorem 2.2

Vertical trapezoidal composition formed by n segment in the plane can be computed in $O(k+n \log n)$ expected time by an on-line algorithm

- $\sum_{i=1}^{n} O\left(\log i+k i / n^{2}\right)=O(n \log n+k)$

Difference between conflict lists and history graph

- Conflict graph:
the number of conflict relations between all trapezoids Δ in $H\left(N^{i}\right)$ adjacent to S^{i} and $N \backslash N^{i}$.
- History graph:
the number of conflict relactions between S^{i} and trapezoids Δ in $\widetilde{H}\left(N^{i-1}\right)$
- If S^{i} conflicts a trapezoid Δ created by S^{j} in $H\left(N^{j}\right), j<i, \Delta$ and S^{i} form a conflict relaction in the conflict lists between $H\left(N^{j}\right)$ and $N \backslash N^{j}$
- The two total numbers are the same
- $\left(S^{i}, \Delta\right)$ is a conflict relation
- Conflict Lists: charged when Δ is created
- History Graph: charged when S^{i} is inserted.
- Conflict lists charge first, and history graph charges later.
- What not use history graph?

