### Offline Bewegungsplanung: Part Feeding

Elmar Langetepe University of Bonn

# **Ergebnis: Theorem 4.5!**

#### **Ergebnis: Theorem 4.5!**

Gegeben sei eine Liste von n Kanten, die die konvexe Hülle eines gegebenen Werkstücks repräsentieren. Dann läßt sich in Zeit  $O(n^2 \log n)$  die kürzeste Sequenz von Greifaktionen finden, die eine Orientierung des Werkstücks bis auf Symmetrie garantiert. Der gefundene Plan hat eine Länge von  $O(n^2)$ .

#### **Ergebnis: Theorem 4.5!**

Gegeben sei eine Liste von n Kanten, die die konvexe Hülle eines gegebenen Werkstücks repräsentieren. Dann läßt sich in Zeit  $O(n^2 \log n)$  die kürzeste Sequenz von Greifaktionen finden, die eine Orientierung des Werkstücks bis auf Symmetrie garantiert. Der gefundene Plan hat eine Länge von  $O(n^2)$ .

Beweis!

1. Orientiert Werkstück eindeutig bis auf Symmetrie:

1. Orientiert Werkstück eindeutig bis auf Symmetrie:

Der Algorithmus findet einen Plan, der ein s-Intervall  $\Theta$  der Länge T (kleinste Periode) auf einen Punkt  $\theta'$  abbildet!

1. Orientiert Werkstück eindeutig bis auf Symmetrie:

Der Algorithmus findet einen Plan, der ein s-Intervall  $\Theta$  der Länge T (kleinste Periode) auf einen Punkt  $\theta'$  abbildet!

 $\Theta + T$  wird auf  $\theta' + T$  abgebildet!

1. Orientiert Werkstück eindeutig bis auf Symmetrie:

Der Algorithmus findet einen Plan, der ein s-Intervall  $\Theta$  der Länge T (kleinste Periode) auf einen Punkt  $\theta'$  abbildet!

 $\Theta + T$  wird auf  $\theta' + T$  abgebildet!

2. Es gibt keinen kürzeren Plan mit dieser Eigenschaft

1. Orientiert Werkstück eindeutig bis auf Symmetrie:

Der Algorithmus findet einen Plan, der ein s-Intervall  $\Theta$  der Länge T (kleinste Periode) auf einen Punkt  $\theta'$  abbildet!

 $\Theta + T$  wird auf  $\theta' + T$  abgebildet!

- 2. Es gibt keinen kürzeren Plan mit dieser Eigenschaft
- Zu 1) Wie gesehen, sukzessive:

1. Orientiert Werkstück eindeutig bis auf Symmetrie:

Der Algorithmus findet einen Plan, der ein s-Intervall  $\Theta$  der Länge T (kleinste Periode) auf einen Punkt  $\theta'$  abbildet!

 $\Theta + T$  wird auf  $\theta' + T$  abgebildet!

2. Es gibt keinen kürzeren Plan mit dieser Eigenschaft

Zu 1) Wie gesehen, sukzessive:

• 
$$s(\Theta_i) = [s(\xi_i), s(\nu_i)], \ \Theta_{i-1} = [\xi_{i-1}, \nu_{i-1}], \ |s(\Theta_i)| < |\Theta_{i-1}|$$

1. Orientiert Werkstück eindeutig bis auf Symmetrie:

Der Algorithmus findet einen Plan, der ein s-Intervall  $\Theta$  der Länge T (kleinste Periode) auf einen Punkt  $\theta'$  abbildet!

 $\Theta + T$  wird auf  $\theta' + T$  abgebildet!

2. Es gibt keinen kürzeren Plan mit dieser Eigenschaft

Zu 1) Wie gesehen, sukzessive:

• 
$$s(\Theta_i) = [s(\xi_i), s(\nu_i)], \ \Theta_{i-1} = [\xi_{i-1}, \nu_{i-1}], \ |s(\Theta_i)| < |\Theta_{i-1}|$$

• 
$$\xi_{i-1} \le s(\theta) - s(\xi_i) + \xi_{i-1} \le \nu_{i-1}$$

•  $s(\theta) - (s(\xi_i) - \xi_{i-1})$ , bereits:  $s(\theta)$  durch  $\alpha_i$ 

- $s(\theta) (s(\xi_i) \xi_{i-1})$ , bereits:  $s(\theta)$  durch  $\alpha_i$
- $+\alpha_i$  wegen bereits durchgeführter Drehungen

- $s(\theta) (s(\xi_i) \xi_{i-1})$ , bereits:  $s(\theta)$  durch  $\alpha_i$
- ullet  $+\alpha_i$  wegen bereits durchgeführter Drehungen
- Immer von der Startrichtung aus drehen!!

- $s(\theta) (s(\xi_i) \xi_{i-1})$ , bereits:  $s(\theta)$  durch  $\alpha_i$
- $+\alpha_i$  wegen bereits durchgeführter Drehungen
- Immer von der Startrichtung aus drehen!!
- $s(s(\theta) (s(\xi_i) \xi_{i-1} + \alpha_i)) \in s(\Theta_{i-1})$

- $s(\theta) (s(\xi_i) \xi_{i-1})$ , bereits:  $s(\theta)$  durch  $\alpha_i$
- $+\alpha_i$  wegen bereits durchgeführter Drehungen
- Immer von der Startrichtung aus drehen!!
- $s(s(\theta) (s(\xi_i) \xi_{i-1} + \alpha_i)) \in s(\Theta_{i-1})$
- Mit Dreh.  $s(\xi_i) \xi_{i-1} + \alpha_i$  nach  $s(\Theta_{i-1})$

- $s(\theta) (s(\xi_i) \xi_{i-1})$ , bereits:  $s(\theta)$  durch  $\alpha_i$
- $+\alpha_i$  wegen bereits durchgeführter Drehungen
- Immer von der Startrichtung aus drehen!!
- $s(s(\theta) (s(\xi_i) \xi_{i-1} + \alpha_i)) \in s(\Theta_{i-1})$
- Mit Dreh.  $s(\xi_i) \xi_{i-1} + \alpha_i$  nach  $s(\Theta_{i-1})$
- $\alpha_{i-1} := s(\xi_i) \xi_{i-1} + \alpha_i$

- $s(\theta) (s(\xi_i) \xi_{i-1})$ , bereits:  $s(\theta)$  durch  $\alpha_i$
- $+\alpha_i$  wegen bereits durchgeführter Drehungen
- Immer von der Startrichtung aus drehen!!
- $s(s(\theta) (s(\xi_i) \xi_{i-1} + \alpha_i)) \in s(\Theta_{i-1})$
- Mit Dreh.  $s(\xi_i) \xi_{i-1} + \alpha_i$  nach  $s(\Theta_{i-1})$
- $\alpha_{i-1} := s(\xi_i) \xi_{i-1} + \alpha_i$
- $\varepsilon_{i-1} = \frac{1}{2} \left( |\Theta_j| |s(\Theta_{j+1})| \right)$

- $s(\theta) (s(\xi_i) \xi_{i-1})$ , bereits:  $s(\theta)$  durch  $\alpha_i$
- $+\alpha_i$  wegen bereits durchgeführter Drehungen
- Immer von der Startrichtung aus drehen!!
- $s(s(\theta) (s(\xi_i) \xi_{i-1} + \alpha_i)) \in s(\Theta_{i-1})$
- Mit Dreh.  $s(\xi_i) \xi_{i-1} + \alpha_i$  nach  $s(\Theta_{i-1})$
- $\alpha_{i-1} := s(\xi_i) \xi_{i-1} + \alpha_i$
- $\varepsilon_{i-1} = \frac{1}{2} \left( |\Theta_j| |s(\Theta_{j+1})| \right)$
- $\bullet \ \alpha_{i-1} := s(\xi_i) \xi_{i-1} + \varepsilon_{i-1} + \alpha_i$

• Sei  $\Theta$  letztes Intervall des Alg.

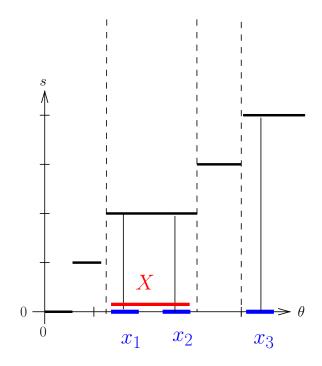
- Sei  $\Theta$  letztes Intervall des Alg.
- $\bullet$   $\Theta$  muss die Länge T haben (falls terminiert!)

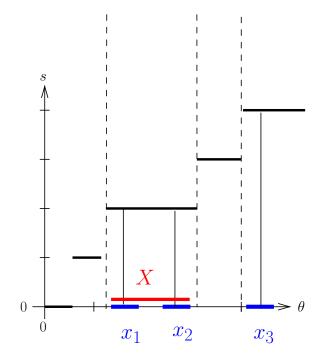
- Sei  $\Theta$  letztes Intervall des Alg.
- $\bullet$   $\Theta$  muss die Länge T haben (falls terminiert!)
- ullet Algorithmus findet Plan, der s-Intervall  $\Theta$  der Länge T auf einen Punkt  $\theta'$  abbildet

- Sei ⊕ letztes Intervall des Alg.
- $\bullet$   $\Theta$  muss die Länge T haben (falls terminiert!)
- ullet Algorithmus findet Plan, der s-Intervall  $\Theta$  der Länge T auf einen Punkt  $\theta'$  abbildet
- T ist kleinste Periode der Greiffunktion des Werkstücks

- Sei  $\Theta$  letztes Intervall des Alg.
- $\bullet$   $\Theta$  muss die Länge T haben (falls terminiert!)
- ullet Algorithmus findet Plan, der s-Intervall  $\Theta$  der Länge T auf einen Punkt  $\theta'$  abbildet
- T ist kleinste Periode der Greiffunktion des Werkstücks
- Für jeden Plan  $\mathcal{A}$ :  $\mathcal{A}(\theta + T) = \mathcal{A}(\theta) + T$  (Lemma 4.3!)

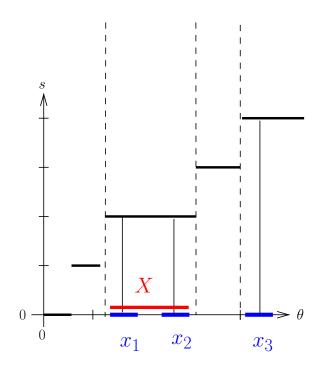
- Sei  $\Theta$  letztes Intervall des Alg.
- $\bullet$   $\Theta$  muss die Länge T haben (falls terminiert!)
- ullet Algorithmus findet Plan, der s-Intervall  $\Theta$  der Länge T auf einen Punkt  $\theta'$  abbildet
- T ist kleinste Periode der Greiffunktion des Werkstücks
- Für jeden Plan  $\mathcal{A}$ :  $\mathcal{A}(\theta + T) = \mathcal{A}(\theta) + T$  (Lemma 4.3!)
- Dann gilt:  $A(\theta + T) = \theta' + T$



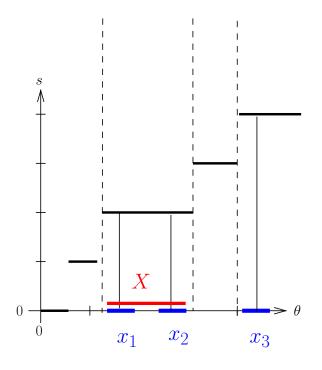


Lemma: Jeder Plan, der  $\Theta \subseteq [0,\pi)$  auf einen Punkt  $\theta$  abbildet, bildet auch das kleinste zusammenhängende Intervall, das  $\Theta$  enthält, auf  $\theta$  ab.

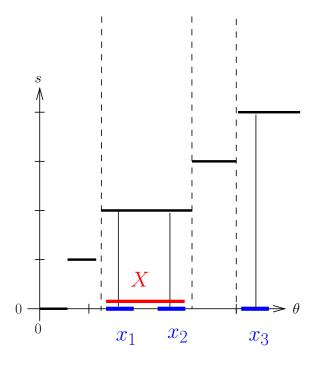
⊕ nicht zs-hängend



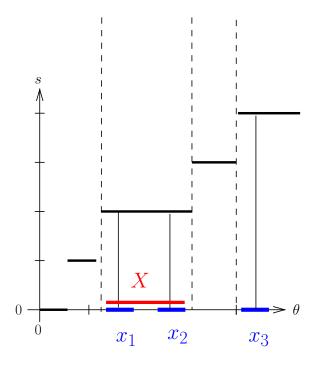
- ⊕ nicht zs-hängend
- $\Theta'$  kleinstes zs-hängende Intervall, das  $\Theta$  enthält.



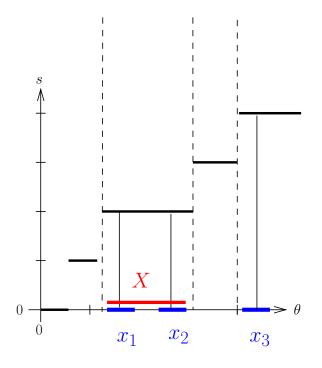
- ⊕ nicht zs-hängend
- $\Theta'$  kleinstes zs-hängende Intervall, das  $\Theta$  enthält.
- $s(\Theta') = s(\Theta)$  wg. Monot., kein Sprung



- ⊕ nicht zs-hängend
- $\Theta'$  kleinstes zs-hängende Intervall, das  $\Theta$  enthält.
- $s(\Theta') = s(\Theta)$  wg. Monot., kein Sprung
- Erste Greifaktion in gleiches s-Intervall



- ⊕ nicht zs-hängend
- $\Theta'$  kleinstes zs-hängende Intervall, das  $\Theta$  enthält.
- $s(\Theta') = s(\Theta)$  wg. Monot., kein Sprung
- Erste Greifaktion in gleiches s-Intervall
- Gleiche Aktionen



# Theorem 4.5! Kleinster (ii)!

#### Theorem 4.5! Kleinster (ii)!

ullet Ann.: Es ex. solcher Plan  $\mathcal{A}'$  mit weniger Schritten als  $\mathcal{A}$ 

- ullet Ann.: Es ex. solcher Plan  $\mathcal{A}'$  mit weniger Schritten als  $\mathcal{A}$
- Sei  $(\Theta_1, \Theta_2, \dots, \Theta_i)$  die Liste der s-Intervalle des Algorithmus

- $\bullet$  Ann.: Es ex. solcher Plan  $\mathcal{A}'$  mit weniger Schritten als  $\mathcal{A}$
- Sei  $(\Theta_1, \Theta_2, \dots, \Theta_i)$  die Liste der s-Intervalle des Algorithmus
- $(\Theta'_1, \Theta'_2, \dots, \Theta'_i)$  seien die zum Plan  $\mathcal{A}'$  gehörenden Intervalle, erweitert auf zusammenhängende Intervalle!

- ullet Ann.: Es ex. solcher Plan  $\mathcal{A}'$  mit weniger Schritten als  $\mathcal{A}$
- Sei  $(\Theta_1, \Theta_2, \dots, \Theta_i)$  die Liste der s-Intervalle des Algorithmus
- $\bullet$   $(\Theta'_1, \Theta'_2, \dots, \Theta'_i)$  seien die zum Plan  $\mathcal{A}'$  gehörenden Intervalle, erweitert auf zusammenhängende Intervalle!
- $\bullet$   $\Theta_i$  bildet auf  $\Theta_{i+1}$ ,  $\Theta_i'$  auf  $\Theta_{i+1}'$  ab

- ullet Ann.: Es ex. solcher Plan  $\mathcal{A}'$  mit weniger Schritten als  $\mathcal{A}$
- Sei  $(\Theta_1, \Theta_2, \dots, \Theta_i)$  die Liste der s-Intervalle des Algorithmus
- $\bullet$   $(\Theta'_1, \Theta'_2, \dots, \Theta'_i)$  seien die zum Plan  $\mathcal{A}'$  gehörenden Intervalle, erweitert auf zusammenhängende Intervalle!
- $\bullet$   $\Theta_i$  bildet auf  $\Theta_{i+1}$ ,  $\Theta_i'$  auf  $\Theta_{i+1}'$  ab
- Das s-Image von  $\Theta_{i+1}$  ist kleiner als  $\Theta_i$ , s-Image von  $\Theta'_{i+1}$  ist kleiner als  $\Theta'_i$

- ullet Ann.: Es ex. solcher Plan  $\mathcal{A}'$  mit weniger Schritten als  $\mathcal{A}$
- Sei  $(\Theta_1, \Theta_2, \dots, \Theta_i)$  die Liste der s-Intervalle des Algorithmus
- $\bullet$   $(\Theta'_1, \Theta'_2, \dots, \Theta'_i)$  seien die zum Plan  $\mathcal{A}'$  gehörenden Intervalle, erweitert auf zusammenhängende Intervalle!
- $\bullet$   $\Theta_i$  bildet auf  $\Theta_{i+1}$ ,  $\Theta_i'$  auf  $\Theta_{i+1}'$  ab
- Das s-Image von  $\Theta_{i+1}$  ist kleiner als  $\Theta_i$ , s-Image von  $\Theta'_{i+1}$  ist kleiner als  $\Theta'_i$
- Folge der  $\Theta_i$ ,  $\Theta'_i$  wird sukzessive größer, bis T

- ullet Ann.: Es ex. solcher Plan  $\mathcal{A}'$  mit weniger Schritten als  $\mathcal{A}$
- Sei  $(\Theta_1, \Theta_2, \dots, \Theta_i)$  die Liste der s-Intervalle des Algorithmus
- $\bullet$   $(\Theta'_1, \Theta'_2, \dots, \Theta'_i)$  seien die zum Plan  $\mathcal{A}'$  gehörenden Intervalle, erweitert auf zusammenhängende Intervalle!
- $\bullet$   $\Theta_i$  bildet auf  $\Theta_{i+1}$ ,  $\Theta_i'$  auf  $\Theta_{i+1}'$  ab
- Das s-Image von  $\Theta_{i+1}$  ist kleiner als  $\Theta_i$ , s-Image von  $\Theta'_{i+1}$  ist kleiner als  $\Theta'_i$
- Folge der  $\Theta_i$ ,  $\Theta'_i$  wird sukzessive größer, bis T
- Aufgrund des Algorithmus gilt  $|\Theta_1| \geq |\Theta_1'|$

- ullet Ann.: Es ex. solcher Plan  $\mathcal{A}'$  mit weniger Schritten als  $\mathcal{A}$
- Sei  $(\Theta_1, \Theta_2, \dots, \Theta_i)$  die Liste der s-Intervalle des Algorithmus
- $\bullet$   $(\Theta'_1, \Theta'_2, \dots, \Theta'_i)$  seien die zum Plan  $\mathcal{A}'$  gehörenden Intervalle, erweitert auf zusammenhängende Intervalle!
- $\bullet$   $\Theta_i$  bildet auf  $\Theta_{i+1}$ ,  $\Theta_i'$  auf  $\Theta_{i+1}'$  ab
- Das s-Image von  $\Theta_{i+1}$  ist kleiner als  $\Theta_i$ , s-Image von  $\Theta'_{i+1}$  ist kleiner als  $\Theta'_i$
- Folge der  $\Theta_i$ ,  $\Theta'_i$  wird sukzessive größer, bis T
- Aufgrund des Algorithmus gilt  $|\Theta_1| \geq |\Theta_1'|$
- Da  $\mathcal{A}'$  nach j Schritten terminiert,  $\mathcal{A}$  jedoch nicht, muss  $|\Theta_j| < |\Theta_j'|$  gelten

• Es existiert ein k mit  $|\Theta_k| \geq |\Theta'_k|$  und  $|\Theta_{k+1}| < |\Theta'_{k+1}|$ 

- Es existiert ein k mit  $|\Theta_k| \geq |\Theta_k'|$  und  $|\Theta_{k+1}| < |\Theta_{k+1}'|$
- $|s(\Theta'_{k+1})| < |\Theta'_k| \le |\Theta_k|$

- Es existiert ein k mit  $|\Theta_k| \geq |\Theta'_k|$  und  $|\Theta_{k+1}| < |\Theta'_{k+1}|$
- $|s(\Theta'_{k+1})| < |\Theta'_k| \le |\Theta_k|$
- ullet Widerspruch: Algorithmus hätte das größere Intervall  $\Theta_{k+1}'$  gewählt

Für jedes polygonale Werkstück finden wir einen solchen Plan!

• Zu zeigen: Der Algorithmus terminiert stets!

- Zu zeigen: Der Algorithmus terminiert stets!
- ullet Technik: Funktion  $s:S^1 \to S^1$  auf X-Achse erweitern

- Zu zeigen: Der Algorithmus terminiert stets!
- ullet Technik: Funktion  $s:S^1 \to S^1$  auf  $X ext{-Achse}$  erweitern
- Aussage:

- Zu zeigen: Der Algorithmus terminiert stets!
- Technik: Funktion  $s: S^1 \to S^1$  auf X-Achse erweitern
- Aussage: Wir finden stets eine Sequenz von s-Intervallen  $(\Theta_1, \Theta_2, \dots, \Theta_i)$ , so dass das s-Image von  $\Theta_{i+1}$  kleiner ist als  $\Theta_i$

- Zu zeigen: Der Algorithmus terminiert stets!
- ullet Technik: Funktion  $s:S^1 \to S^1$  auf X-Achse erweitern
- Aussage: Wir finden stets eine Sequenz von s-Intervallen  $(\Theta_1, \Theta_2, \dots, \Theta_i)$ , so dass das s-Image von  $\Theta_{i+1}$  kleiner ist als  $\Theta_i$
- Bis wir bei Periode T landen

- Zu zeigen: Der Algorithmus terminiert stets!
- ullet Technik: Funktion  $s:S^1 \to S^1$  auf X-Achse erweitern
- Aussage: Wir finden stets eine Sequenz von s-Intervallen  $(\Theta_1, \Theta_2, \dots, \Theta_i)$ , so dass das s-Image von  $\Theta_{i+1}$  kleiner ist als  $\Theta_i$
- Bis wir bei Periode T landen
- Für jedes s-Intervall ex. größeres s-Intervall mit der Eigenschaft, bis zur Periode

- Zu zeigen: Der Algorithmus terminiert stets!
- Technik: Funktion  $s: S^1 \to S^1$  auf X-Achse erweitern
- Aussage: Wir finden stets eine Sequenz von s-Intervallen  $(\Theta_1, \Theta_2, \dots, \Theta_i)$ , so dass das s-Image von  $\Theta_{i+1}$  kleiner ist als  $\Theta_i$
- Bis wir bei Periode T landen
- Für jedes s-Intervall ex. größeres s-Intervall mit der Eigenschaft, bis zur Periode
- h Größe des bisherigen s-Intervals,

- Zu zeigen: Der Algorithmus terminiert stets!
- ullet Technik: Funktion  $s:S^1 \to S^1$  auf X-Achse erweitern
- Aussage: Wir finden stets eine Sequenz von s-Intervallen  $(\Theta_1, \Theta_2, \dots, \Theta_i)$ , so dass das s-Image von  $\Theta_{i+1}$  kleiner ist als  $\Theta_i$
- Bis wir bei Periode T landen
- Für jedes s-Intervall ex. größeres s-Intervall mit der Eigenschaft, bis zur Periode
- h Größe des bisherigen s-Intervals, h=T fertig!

- Zu zeigen: Der Algorithmus terminiert stets!
- Technik: Funktion  $s: S^1 \to S^1$  auf X-Achse erweitern
- Aussage: Wir finden stets eine Sequenz von s-Intervallen  $(\Theta_1, \Theta_2, \dots, \Theta_i)$ , so dass das s-Image von  $\Theta_{i+1}$  kleiner ist als  $\Theta_i$
- Bis wir bei Periode T landen
- Für jedes s-Intervall ex. größeres s-Intervall mit der Eigenschaft, bis zur Periode
- h Größe des bisherigen s-Intervals, h=T fertig!
- Bedeutet:  $\forall \theta \ s(\theta + h) = s(\theta) + h$

Für jedes polygonale Werkstück finden wir einen solchen Plan!

• h Größe des bisherigen s-Intervalls,

Für jedes polygonale Werkstück finden wir einen solchen Plan!

• h Größe des bisherigen s-Intervalls, h < T!

- h Größe des bisherigen s-Intervalls, h < T!
- $\forall \theta \ s(\theta + h) = s(\theta) + h$  gilt nicht!

- h Größe des bisherigen s-Intervalls, h < T!
- $\forall \theta \ s(\theta + h) = s(\theta) + h$  gilt nicht!
- Ann:  $\exists \theta : s(\theta + h) s(\theta) < h$

- h Größe des bisherigen s-Intervalls, h < T!
- $\forall \theta \ s(\theta + h) = s(\theta) + h$  gilt nicht!
- Ann:  $\exists \theta : s(\theta + h) s(\theta) < h$
- $\Theta_j = [\theta_j, \theta_j + h)$  bisheriges s-Interval

- h Größe des bisherigen s-Intervalls, h < T!
- $\forall \theta \ s(\theta + h) = s(\theta) + h$  gilt nicht!
- Ann:  $\exists \theta : s(\theta + h) s(\theta) < h$
- $\Theta_j = [\theta_j, \theta_j + h)$  bisheriges s-Interval
- Betrachte  $\Theta = [\theta, \theta + h]$

- h Größe des bisherigen s-Intervalls, h < T!
- $\forall \theta \ s(\theta + h) = s(\theta) + h$  gilt nicht!
- Ann:  $\exists \theta: \ s(\theta+h) s(\theta) < h$
- $\Theta_j = [\theta_j, \theta_j + h)$  bisheriges s-Interval
- Betrachte  $\Theta = [\theta, \theta + h]$
- s-Image:

- h Größe des bisherigen s-Intervalls, h < T!
- $\forall \theta \ s(\theta + h) = s(\theta) + h$  gilt nicht!
- Ann:  $\exists \theta: \ s(\theta+h) s(\theta) < h$
- $\Theta_j = [\theta_j, \theta_j + h)$  bisheriges s-Interval
- Betrachte  $\Theta = [\theta, \theta + h]$
- s-Image:  $|s(\Theta)| < h = |\Theta_j|$

- h Größe des bisherigen s-Intervalls, h < T!
- $\forall \theta \ s(\theta + h) = s(\theta) + h$  gilt nicht!
- Ann:  $\exists \theta : s(\theta + h) s(\theta) < h$
- $\Theta_j = [\theta_j, \theta_j + h)$  bisheriges s-Interval
- Betrachte  $\Theta = [\theta, \theta + h]$
- s-Image:  $|s(\Theta)| < h = |\Theta_j|$
- Intervall  $\Theta$  nach rechts/links erweitern, geht immer!

- h Größe des bisherigen s-Intervalls, h < T!
- $\forall \theta \ s(\theta + h) = s(\theta) + h$  gilt nicht!
- Ann:  $\exists \theta : s(\theta + h) s(\theta) < h$
- $\Theta_j = [\theta_j, \theta_j + h)$  bisheriges s-Interval
- Betrachte  $\Theta = [\theta, \theta + h]$
- s-Image:  $|s(\Theta)| < h = |\Theta_j|$
- Intervall  $\Theta$  nach rechts/links erweitern, geht immer!
- Bis zur nächsten Unstetigkeitsstelle!

- h Größe des bisherigen s-Intervalls, h < T!
- $\forall \theta \ s(\theta + h) = s(\theta) + h$  gilt nicht!
- Ann:  $\exists \theta : s(\theta + h) s(\theta) < h$
- $\Theta_j = [\theta_j, \theta_j + h)$  bisheriges s-Interval
- Betrachte  $\Theta = [\theta, \theta + h]$
- s-Image:  $|s(\Theta)| < h = |\Theta_j|$
- Intervall  $\Theta$  nach rechts/links erweitern, geht immer!
- Bis zur nächsten Unstetigkeitsstelle!
- Nächstes Intervall gefunden! Größer!

- (i) Entweder ein größeres s-Intervall, dessen s-Image kleiner ist: falls  $\exists \theta : s(\theta + h) s(\theta) < h,$
- (ii) oder h ist die Periode der Greiffunktion:  $\forall \theta : s(\theta + h) = s(\theta) + h$ .

- (i) Entweder ein größeres s-Intervall, dessen s-Image kleiner ist: falls  $\exists \theta: s(\theta+h)-s(\theta) < h,$
- (ii) oder h ist die Periode der Greiffunktion:  $\forall \theta : s(\theta + h) = s(\theta) + h$ .

Ausschließen:  $\forall \theta : s(\theta + h) - s(\theta) > h$ 

- (i) Entweder ein größeres s-Intervall, dessen s-Image kleiner ist: falls  $\exists \theta: s(\theta+h)-s(\theta) < h,$
- (ii) oder h ist die Periode der Greiffunktion:  $\forall \theta : s(\theta + h) = s(\theta) + h$ .

Ausschließen:  $\forall \theta : s(\theta + h) - s(\theta) > h$ 

 $\theta \in [0, T)$ 

$$\int_0^T s(\theta + h) - s(\theta) - h \, d\theta$$

$$\int_0^T s(\theta + h) - s(\theta) - h d\theta = \int_h^{T+h} s(\theta) d\theta - \int_0^T s(\theta) d\theta - hT$$

$$\int_0^T s(\theta + h) - s(\theta) - h \, d\theta = \int_h^{T+h} s(\theta) \, d\theta - \int_0^T s(\theta) \, d\theta - hT$$
$$= -\int_0^h s(\theta) \, d\theta + \int_T^{T+h} s(\theta) \, d\theta - hT$$

$$\int_0^T s(\theta + h) - s(\theta) - h \, d\theta = \int_h^{T+h} s(\theta) \, d\theta - \int_0^T s(\theta) \, d\theta - hT$$

$$= -\int_0^h s(\theta) \, d\theta + \int_T^{T+h} s(\theta) \, d\theta - hT$$

$$= -\int_0^h s(\theta) \, d\theta + \int_0^h s(\theta) + T \, d\theta - hT$$

$$\int_0^T s(\theta + h) - s(\theta) - h \, d\theta = \int_h^{T+h} s(\theta) \, d\theta - \int_0^T s(\theta) \, d\theta - hT$$

$$= -\int_0^h s(\theta) \, d\theta + \int_T^{T+h} s(\theta) \, d\theta - hT$$

$$= -\int_0^h s(\theta) \, d\theta + \int_0^h s(\theta) + T \, d\theta - hT$$

$$= -\int_0^h s(\theta) \, d\theta + \int_0^h s(\theta) \, d\theta + hT - hT$$

$$\int_0^T s(\theta + h) - s(\theta) - h \, d\theta = \int_h^{T+h} s(\theta) \, d\theta - \int_0^T s(\theta) \, d\theta - hT$$

$$= -\int_0^h s(\theta) \, d\theta + \int_T^{T+h} s(\theta) \, d\theta - hT$$

$$= -\int_0^h s(\theta) \, d\theta + \int_0^h s(\theta) + T \, d\theta - hT$$

$$= -\int_0^h s(\theta) \, d\theta + \int_0^h s(\theta) \, d\theta + hT - hT$$

$$= 0$$

$$\begin{split} \int_0^T s(\theta+h) - s(\theta) - h \, d\theta &= \int_h^{T+h} s(\theta) \, d\theta - \int_0^T s(\theta) \, d\theta - hT \\ &= -\int_0^h s(\theta) \, d\theta + \int_T^{T+h} s(\theta) \, d\theta - hT \\ &= -\int_0^h s(\theta) \, d\theta + \int_0^h s(\theta) + T \, d\theta - hT \\ &= -\int_0^h s(\theta) \, d\theta + \int_0^h s(\theta) \, d\theta + hT - hT \\ &= 0 \text{ Nur positiv geht nicht!} \end{split}$$

• Diameter Fkt., Greif. Fkt. O(n)

- Diameter Fkt., Greif. Fkt. O(n)
- n Intervalle mit Stetigkeit: O(n)

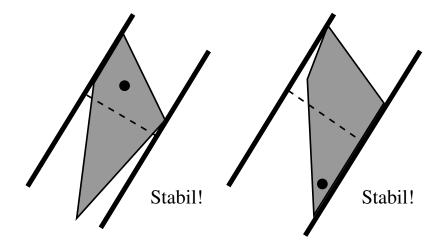
- Diameter Fkt., Greif. Fkt. O(n)
- n Intervalle mit Stetigkeit: O(n)
- ullet  $O(n^2)$  viele s-Intervalle X, sortieren nach |s(X)|

- Diameter Fkt., Greif. Fkt. O(n)
- n Intervalle mit Stetigkeit: O(n)
- ullet  $O(n^2)$  viele s-Intervalle X, sortieren nach |s(X)|
- In While Schleife verwenden

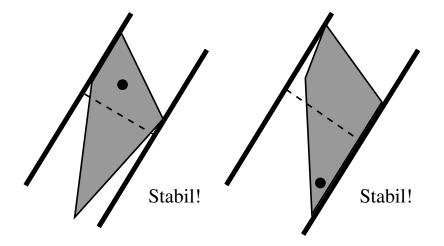
- Diameter Fkt., Greif. Fkt. O(n)
- n Intervalle mit Stetigkeit: O(n)
- ullet  $O(n^2)$  viele s-Intervalle X, sortieren nach |s(X)|
- In While Schleife verwenden
- Plan in O(i),  $i \in O(n^2)$

- Diameter Fkt., Greif. Fkt. O(n)
- n Intervalle mit Stetigkeit: O(n)
- ullet  $O(n^2)$  viele s-Intervalle X, sortieren nach |s(X)|
- In While Schleife verwenden
- Plan in O(i),  $i \in O(n^2)$
- Dominiert durch  $O(n^2 \log n)$

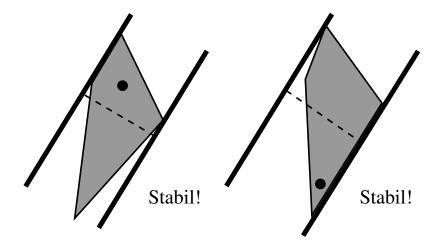
- Diameter Fkt., Greif. Fkt. O(n)
- n Intervalle mit Stetigkeit: O(n)
- ullet  $O(n^2)$  viele s-Intervalle X, sortieren nach |s(X)|
- In While Schleife verwenden
- Plan in O(i),  $i \in O(n^2)$
- Dominiert durch  $O(n^2 \log n)$
- Länge des Plans in  $O(n^2)$



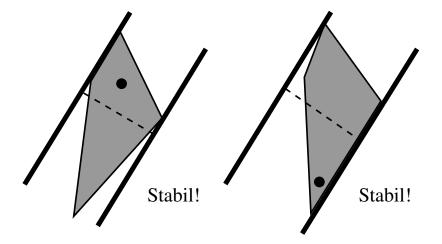
• Praxis Massenschwerpunkt beeinflusst das Ergebnis



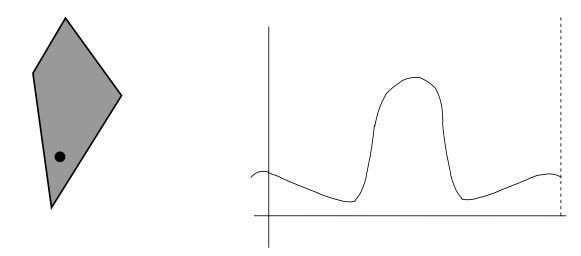
- Praxis Massenschwerpunkt beeinflusst das Ergebnis
- Eine Backe trifft zuerst



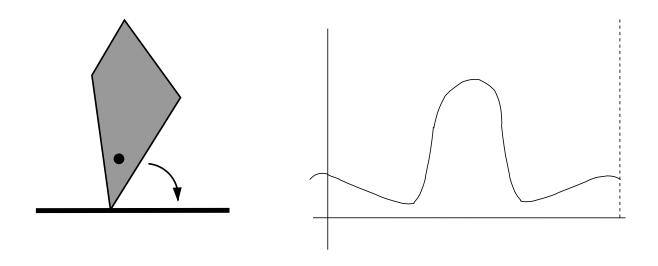
- Praxis Massenschwerpunkt beeinflusst das Ergebnis
- Eine Backe trifft zuerst
- Festlegen welche!



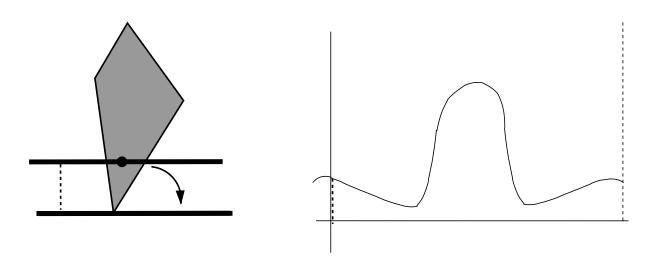
• Eine Backe triftt zuerst



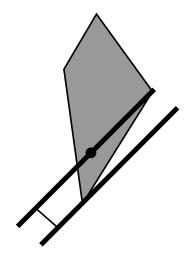
- Eine Backe triftt zuerst
- Massenschwerpunkt und ausgewählte Backe

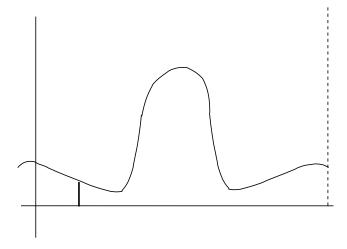


- Eine Backe triftt zuerst
- Massenschwerpunkt und ausgewählte Backe
- ullet Funktion mit Winkel lpha
- Massenschwerpunkt und Backe

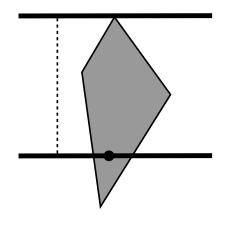


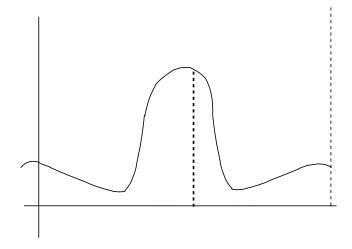
- Eine Backe triftt zuerst
- Massenschwerpunkt und ausgewählte Backe
- ullet Funktion mit Winkel lpha
- Massenschwerpunkt und Backe

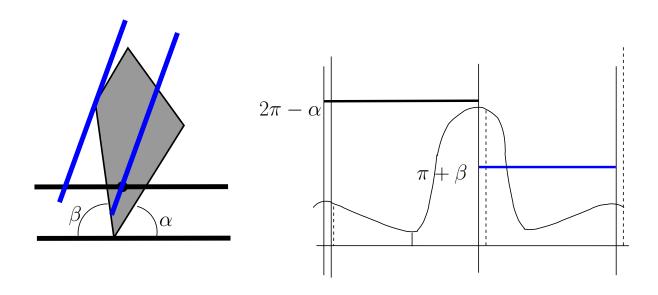




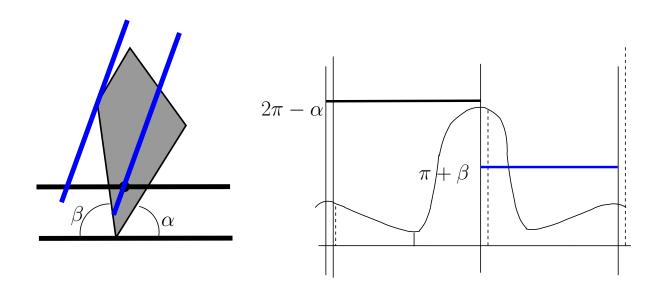
- Eine Backe triftt zuerst
- Massenschwerpunkt und ausgewählte Backe
- ullet Funktion mit Winkel lpha
- Massenschwerpunkt und Backe



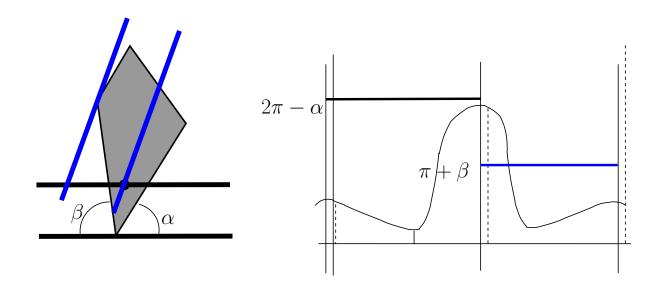




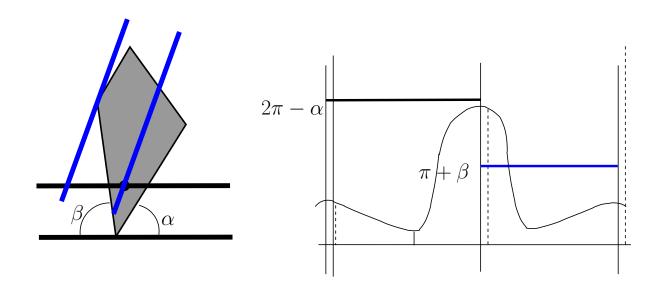
• Eine Backe trifft zuerst



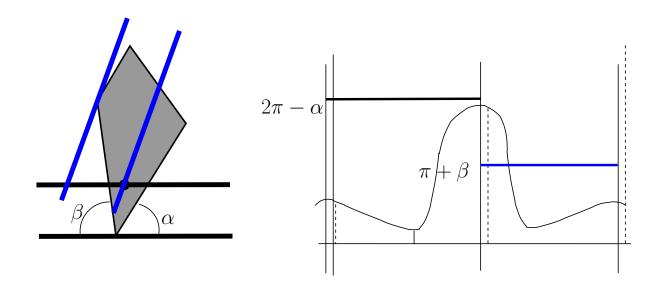
- Eine Backe trifft zuerst
- Treppenfkt.: Zwischen zwei Maxima auf ein Minima



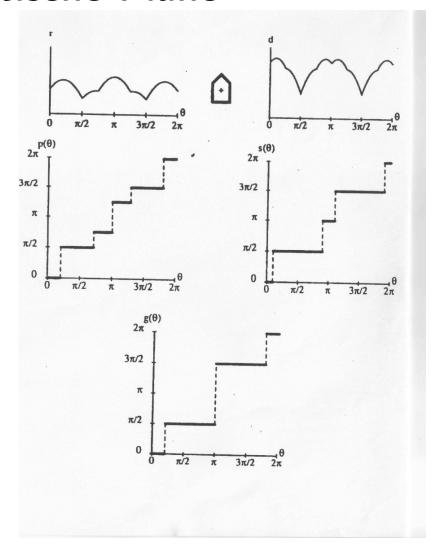
- Eine Backe trifft zuerst
- Treppenfkt.: Zwischen zwei Maxima auf ein Minima
- Funktion bezüglich Backe



- Eine Backe trifft zuerst
- Treppenfkt.: Zwischen zwei Maxima auf ein Minima
- Funktion bezüglich Backe
- Genau wie Squeeze Funktion

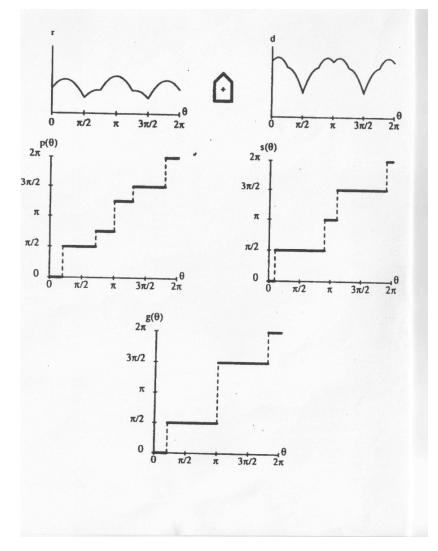


#### Realistische Pläne

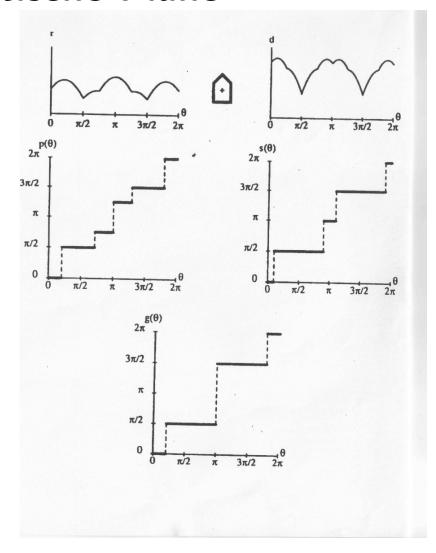


#### Realistische Pläne

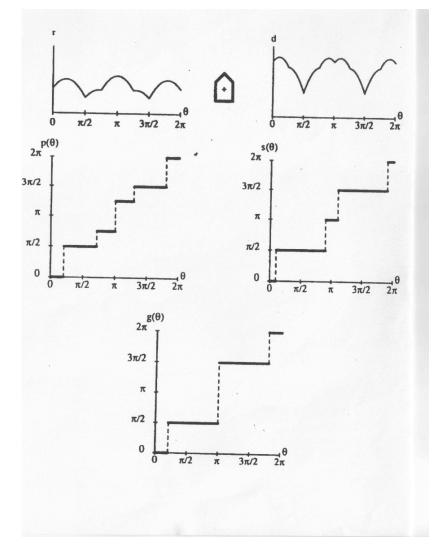
Zuerst eine Push-Operation



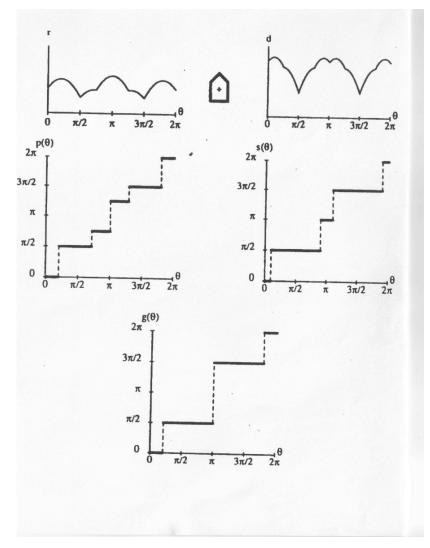
- Zuerst eine Push-Operation
- Danach eine Greifoperation



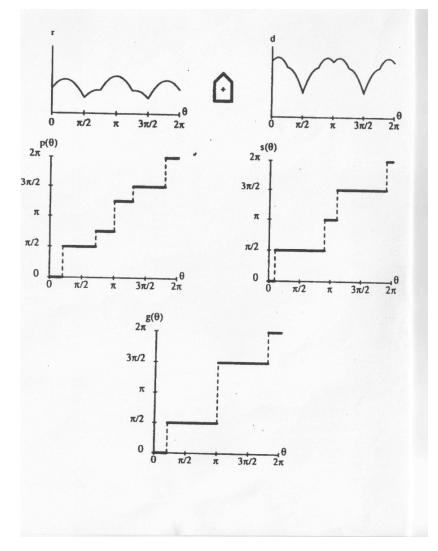
- Zuerst eine Push-Operation
- Danach eine Greifoperation
- Bei Greifoperation somit beide Backen gleichzeitig

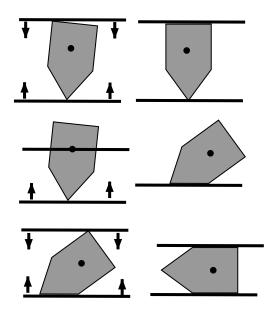


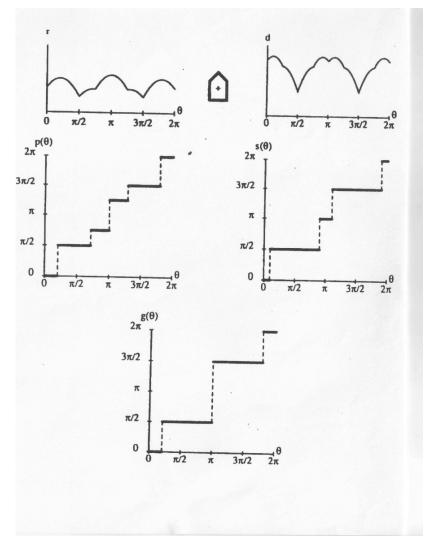
- Zuerst eine Push-Operation
- Danach eine Greifoperation
- Bei Greifoperation somit beide Backen gleichzeitig
- s ist Greiffunktion,
   p ist Schiebefunktion



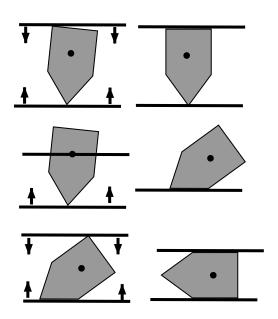
- Zuerst eine Push-Operation
- Danach eine Greifoperation
- Bei Greifoperation somit beide Backen gleichzeitig
- s ist Greiffunktion,p ist Schiebefunktion
- $\bullet \ \, \text{Transferfunktion} \ \, g = \\ s \circ p$

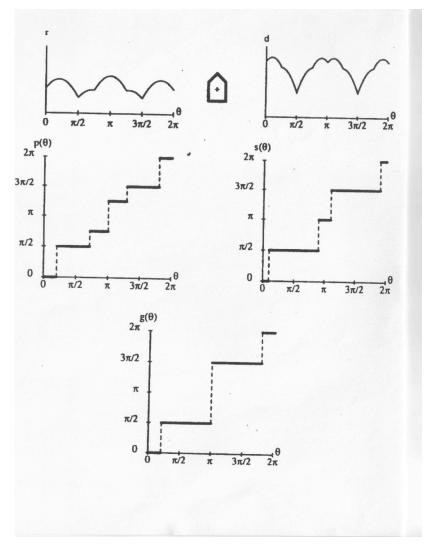




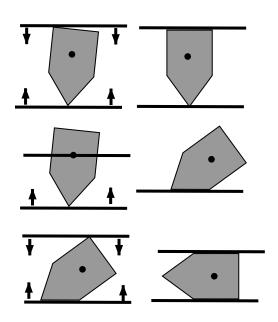


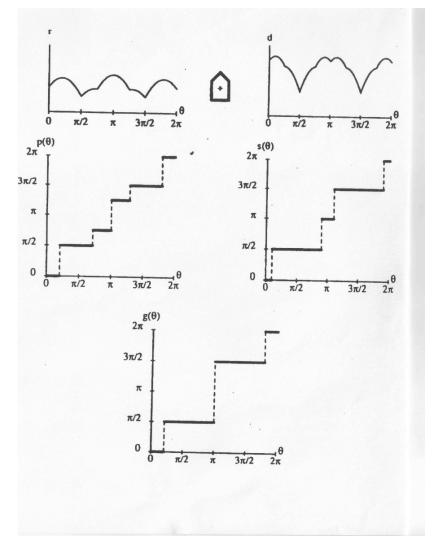
• Winkel  $\pi - \epsilon$ 



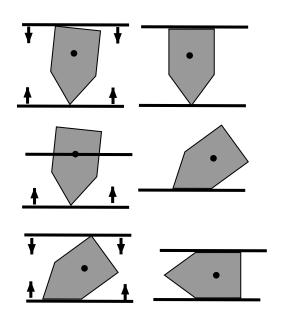


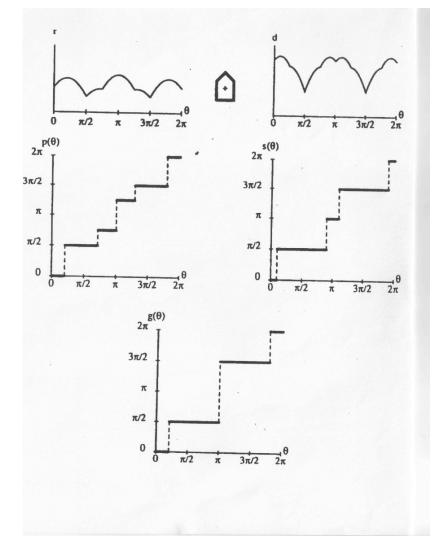
- Winkel  $\pi \epsilon$
- Greifoperation



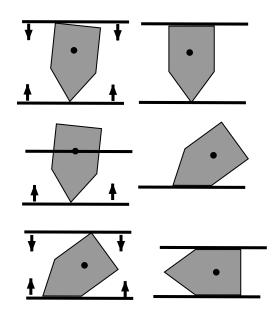


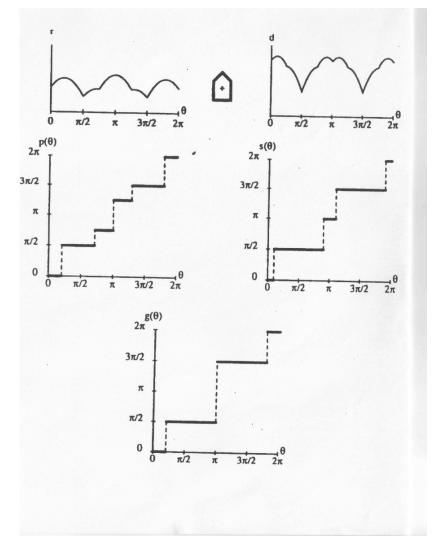
- Winkel  $\pi \epsilon$
- Greifoperation
- Pushoperation





- Winkel  $\pi \epsilon$
- Greifoperation
- Pushoperation
- Push und Greif.Op



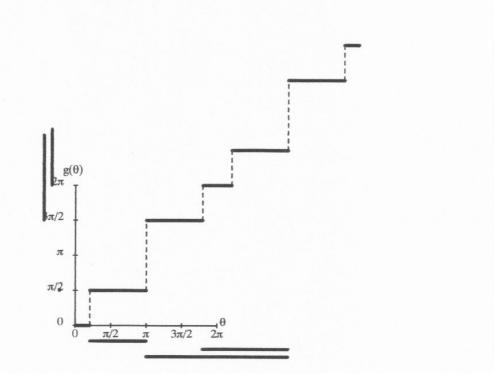


### Plan für Transferfunktion

• 
$$\Theta_1 = [\pi/2 - x, \pi)$$

$$\Theta_2 = [2\pi - x, 3\pi),$$
 
$$|s(\theta_2)| = \pi/2$$

- $\bullet \ \Theta_3 = [\pi, 3\pi),$  $|s(\theta_3)| = \pi$
- Periode  $2\pi!$



### Plan für Transferfunktion

• 
$$\Theta_1 = [\pi/2 - x, \pi)$$

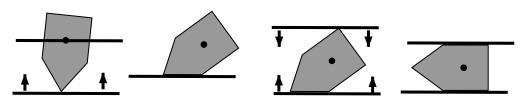
• 
$$\Theta_2 = [2\pi - x, 3\pi), |s(\theta_2)| = \pi/2$$

• 
$$\Theta_3 = [\pi, 3\pi), |s(\theta_3)| = \pi$$

- $\bullet$   $\alpha_3 := 0$
- $\alpha_2 = s(\pi) (2\pi x) + 0 x/2 = -\pi/2 + x/2$
- Mod.:  $\alpha_2 = (3\pi/2 + x/2) \approx 288^{\circ}$
- $\alpha_1 = s(2\pi x) (\pi/2 x) + \alpha_2 x/2 = 3\pi/2 + x + \alpha_2 x/2 = \pi + x \approx 126^{\circ}$

# Plan für Transferfunktion

 $\alpha_3 = 0$ 



- $\bullet \ \alpha_3 := 0$
- $\alpha_2 \approx 288^{\circ}$
- $\alpha_1 \approx 126^{\circ}$

