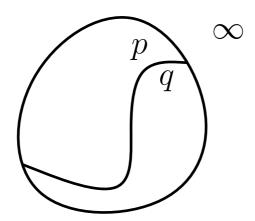
6. Cosntruction of AVD

Finite Part of AVD

- Let Γ be a simple closed curve such that all intersections between bisectring curve lie inside the inner domain of Γ
- Consider a site ∞ , define $J(p,\infty)=J(\infty,p)$ to be Γ for all sites $p\in S$, and $D(\infty,p)$ to be the outer domain of Γ for all sites $p\in S$.

Incremental Construction

- Let s_1, s_2, \ldots, s_n be a random squence of S
- Let R_i be $\{\infty, s_1, s_2, \dots, s_i\}$
- Iteratively construct $V(R_2), V(R_3), \ldots, V(R_n)$



General Position Assumption

- No $J(p,q),\ J(p,r)$ and J(p,t) intersect the same point for any four distinct sites, $p,q,r,t\in S$
 - \rightarrow Degree of a Voronoi vertex is 3

Remark

- For $1 \le i \le n$ and for all sites $p \in R_i$, $VR(p, R_i)$ is simply connected, i.e., path connected and no hole
- If J(p,q) and J(p,r) intersect at a point $x,\,J(q,r)$ must pass through x

Basic Operations

- Given J(p,q) and a point v, determine $v \in D(p,q), v \in J(p,q)$, or $v \in D(q,p)$
- ullet Given a point v in common to three bisecting curves, determine the clockwise order of the curves around v
- Given points $u \in J(p,q)$ and $w \in J(p,r)$ and orientation of these curves , determine the first point of $J(p,r)\mid_{(w,\infty]}$ crossed by $J(p,q)\mid_{(v,\infty]}$
- Given J(p,q) with an orientation and points v,w,x on J(p,q), determine if v come before w on $J(p,q)\mid_{(x,\infty]}$

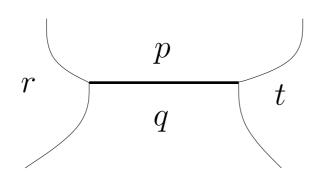
Notation: Give a connected subset A of R^2 , int A, bd A, and cl A mean the interior, the boundary, and the closure of A, respectively.

Conflict Graph G(R), where R is R_i for $2 \le i \le n$

- bipartitle graph (U, V, E)
- U: Voronoi edges of V(R)
- V: Sites in $S \setminus R$
- $E: \{(e,s) \mid e \in V(R), s \in S \setminus R, e \cap VR(s, R \cup \{s\}) \neq \emptyset\}$
 - a conflict relation between e and s.

Remark:

a Voronoi edge is defined by 4 sites under the general position assumption



Let $R \subseteq S$ and $t \in S \setminus R$. Let e be the Voronoi edge between $\mathrm{VR}(p,R)$ and $\mathrm{VR}(q,R)$. $e \cap \mathrm{VR}(t,R \cup \{t\}) = e \cap \mathrm{R}(t,\{p,q,r\})$. (Local Test is enough) *Proof:*

 \subseteq : Immediately from $VR(t, R \cup \{t\}) \subseteq VR(t, \{p, q, t\})$

 \supseteq : Let $x \in e \cap VR(t, \{p, q, t\})$

- Since $x \in e$, $x \in VR(p, R) \cup VR(q, R)$ and $x \notin VR(r, R) \supseteq VR(r, R \cup \{t\})$ for any $r \in R \setminus \{p, q\}$.
- Since $x \in VR(t, \{p, q, t\}), x \notin VR(p, \{p, q, t\}) \cup VR(q, \{p, q, t\}) \supseteq VR(p, R \cup \{t\}) \cup VR(q, R \cup \{t\})$
- $x \notin VR(r, R \cup \{t\})$ for any site $r \in R \to x \in VR(t, R \cup \{t\})$

Insertiong $s \in S \setminus R$ to compute $V(R \cup \{s\})$ and $G(R \cup \{s\})$ from V(R) and G(R). Handle a conflict between s and a Voronoi edge e of VR(R)

Lemma 2

cl $e\cap$ cl VR $(s,R\cup\{s\})\neq\emptyset$ implies $e\cap$ VR $(s,R\cup\{s\})=\emptyset$ proof

- Let x belong to cl $e \cap \operatorname{cl} \operatorname{VR}(s, R \cup \{s\})$
- x is an endpoint of e:
 - -x is the intersection among three curves in R
 - For any $r \in R$, J(s,r) cannot pass through x due to the general position assumption
 - $-x \in D(s,r) \to \text{the neighborhood of } x \in D(s,r)$
 - $-\exists y \in e \text{ belongs to } VR(s, R \cup \{s\})$
- $x \in e \cap \mathrm{bd} \ \mathrm{VR}(s, R \cup \{s\})$
 - $-x \in J(p,q) \cap J(s,r)$
 - a point $y \in e$ in the neighborhood of x such that $y \in VR(s, R \cup \{s\})$

Let \mathcal{Q} be $VR(s, R \cup \{s\})$

Lemma 3

 $Q = \emptyset$ if and only if $\deg_{G(R)}(s) = 0$ $proof (\to)$ If $Q = \emptyset$, $\deg_{G(R)}(s) = 0$ (\leftarrow)

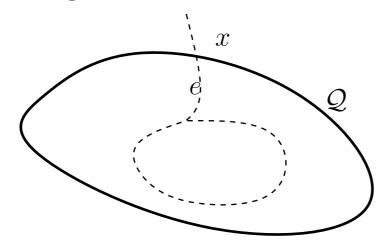
- $\deg_{G(R)}(s) = 0$ implies cl $\mathcal{Q} \subseteq \operatorname{int} \operatorname{VR}(r, R)$ for some $r \in R$
- $VR(r, R \cup \{s\}) = VR(r, R) Q$
- Since $VR(r, R \cup \{s\})$ must be simply connected, $Q = \emptyset$

Lemma 4

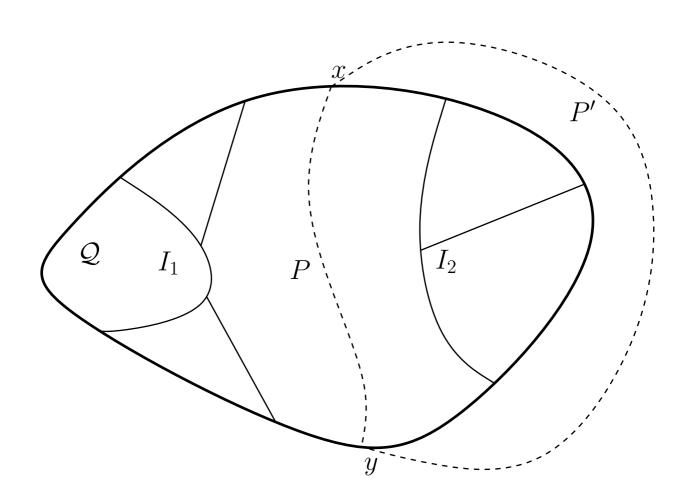
Let I be $V(R) \cap \text{bd } \mathcal{Q}$.

I is a connected set which intersects bd Q in at least two points. Proof:

- bd \mathcal{Q} is a closed curve which does not go through any vertex of V(R) due to the general position assumption.
- Let I_1, I_2, \ldots, I_k be connected components of I
- Claim: I_j , $1 \le j \le k$, contains two points of bd Q.
 - If I_j contains no point, $I_j \subseteq \text{int } \mathcal{Q}$. In other words, for some $r \in R$, VR(r,R) contains I_j , contradicting that VR(r,R) must be simply connected
 - If I_j intersects exactly one point x on $\operatorname{bd} \mathcal{Q}$, let e be the Voronoi edge of V(R) which contains x. Then both sides of e belong to the same Voronoi region. There exists a contradiction.

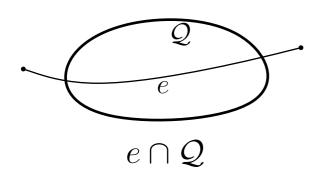


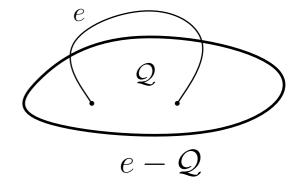
- Assume the contrary that $k \geq 2$
 - There is a path $P \subseteq \operatorname{cl} \mathcal{Q} (\bigcup_{1 \leq j \leq k} I_j)$ connects two points on $\operatorname{bd} \mathcal{Q}$ such that one component of $\mathcal{Q}-P$ contains I_1 and the other component contains I_2 .
 - Let x, y be the two endpoints of P and let $r \in R$ such that $P \subseteq VR(r, R)$.
 - Since $x, y \notin V(R)$, $VR(r, R \cup \{s\}) = VR(r, R) \mathcal{Q} \neq \emptyset \rightarrow x, y \in cl\ VR(r, R \cup \{s\})$
 - Since $x, y \in \text{cl VR}(r, R \cup \{s\})$, there is a path $P' \subseteq \text{VR}(r, R \cup \{s\})$ with endpoints x and y.
 - $-P \circ P'$ is contained in cl VR(r,R) and contains either I_1 and I_2 , contradicting cl VR(r,R) is simply connected



Let e be an edge of V(R). If $e \cap \mathcal{Q} \neq \emptyset$,

- either $e \cap \mathcal{Q} = V(R) \cap \mathcal{Q}$ and $e \cap \mathcal{Q}$ is a single component,
- or e Q is a single component



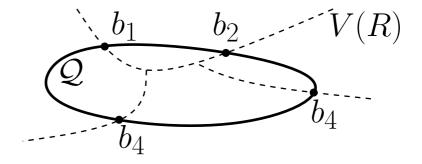


Proof

- Assume first $e \cap \mathcal{Q} = V(R) \cap \mathcal{Q}$
 - Since $V(R) \cap \mathcal{Q}$ is connected, $e \cap \mathcal{Q}$ is connected
- Assume next t $e \cap \mathcal{Q} \neq V(R) \cap \mathcal{Q}$
 - At least one endpoint of e is contained in \mathcal{Q}
 - For every point $x \in e \cap \mathcal{Q}$, one of the subpaths of e connecting x to an endpoint of e must be contained in \mathcal{Q}
 - -e-Q is a single component

Rough Idea

- Let L be $\{e \in V(R) \mid (e, s) \in G(R)\}$
- For every edge $e \in L$, let e' be $e Q = e VR(s, R \cup \{s\})$. If e is an edge between VR(p, R) and VR(q, R), e' = e D(s, p) = e D(s, q)
- Let B be $\{x \in x \text{ is an endpoint of } e' \text{ but is not an endpoint of } e\} = V(R) \cap \text{bd } \mathcal{Q}$
- \bullet bd Q is a cyclic ordering on the points in B



- **Step 1:** Compute e' for each edge $e \in L$
- **Step 2:** Compute B and cyclic ordering on B induced by bd \mathcal{Q}
- **Step 3:** Let x_1, \ldots, x_k be the set B in its cyclic ordering $(x_{k+1} = x_1)$, and let r_i such that $(x_i, x_{i+1}) \in VR(r_i, r)$
 - For $1 \leq i \leq k$, add the part of $J(r_i, s)$ with endpoints x_i and x_{i+1}

 $V(R \cup \{s\})$ can be constructed from V(R) and G(R) in time $O(\deg_{G(R)}(s)+1)$

Lemma 7

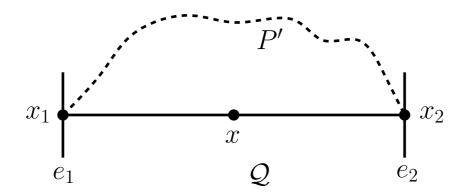
 $G(R \cup \{s\})$ can be constructed from V(R) and G(R) in $O(\Sigma_{(e,s)\in G(R)}\deg_{G(R)}(e))$ time

- 1. Edges of $V(R \cup \{S\})$ which were already edges of V(R) don't changes
- 2. Edges of $V(R \cup \{S\})$ which are parts of edges in L
 - consider each edge $e \in L$
 - If $e \subseteq \mathcal{Q}$, e has to be deleted from conflict graph.
 - If $e \not\subseteq \mathcal{Q}$, $e \mathcal{Q}$ consists at most two subsegment.
 - let e' be one of the subsegments and let t be a site in $S \setminus R \cup \{s\}$.
 - $e' \cap VR(t, R \cup \{s, t\}) = e' \cap_{r \in R} D(t, r) \cap D(t, s) = e' \cap VR(t, R \cup \{t\}) \cap D(t, s) \subseteq e \cap VR(t, R \cup \{t\})$
 - Any site t in conflict with e' must be in conflict with e
 - Takes time $O(\Sigma_{e \in L} \deg_{G(R)}(e)) = O(\Sigma_{(e,s) \in G(R)} \deg_{G(R)}(e))$
- 3. Edges of $VR(s, R \cup \{s\})$ which are complete new
 - Let e_{12} connect x_1 and x_2 in B
 - Let e_{12} belong to VR(p,R) such that e_{12} belongs to J(p,s)
 - Let $x_1 \in e_1$ of VR(p, R) and $x_2 \in e_2$ of VR(p, R)
 - Let P be the part of bd VR(p, R) which connects x_1 and x_2 and is contained in cl Q.
 - Lemma 8 will prove that If $t \in S \setminus R \cup \{s\}$ is in conflict with e_{12} , t must be in conflict with either e_1 , e_2 or one of the edges of P
 - Each edge in L is involved at most twice, takes time $O(\Sigma_{(e,s)\in G(R)}\deg_{G(R)}(e))$

Let $t \in S \setminus (R \cup \{s\})$ and let t conflict with e_{12} in $V(R \cup \{s\})$ (as defined in Lemma 7). t conflicts with e_1 , e_2 , or one of the edges of P.

Proof:

- By the definition of conflict, a point $x \in e_{12}$ exists such that $x \in VR(t, R \cup \{s, t\}) \subseteq VR(t, R \cup \{t\})$
- Assume the contrary that t does not conflict with e_1 , e_2 , or one edge of P.
- For any sufficiently small neighborhood of $U(x_1)$ of x_1 , $VR(t, R \cup \{s, t\}) \cap U(x_1) \subseteq VR(t, R \cup \{t\}) \cap U(x_1) = \emptyset$, and it is also tru for x_2 .
- Let p be a site in R such that $e_{12} \subseteq \operatorname{cl} \operatorname{VR}(p, R \cup \{s\})$, implying that $x_1, x_2 \in \operatorname{cl} \operatorname{VR}(p, R \cup \{s\})$
- There is a path P' from x_1 to x_2 completely inside $VR(p, R\{s, t\}) \subseteq VR(p, R \cup \{t\})$.
- The cycle $x_1 \circ P \circ x_2 \circ P'$ contains $VR(t, R \cup \{t\})$ and is contained in $VR(p, R \cup \{t\})$.
- contradict $VR(p, R \cup \{t\})$ is simply connected



Theorem 1

Let $s \in S \setminus R$. $G(R \cup \{s\})$ and $V(R \cup \{s\})$ can be constructed from G(R) and V(R) in time $O(\Sigma_{(e,s)\in G(R)}\deg_{G(R)}(e))$

Theorem 2

V(S) can be computed in O(nlogn) expected time

- $\sum_{3 \le i \le n} O(\sum_{(e,s_i) \in G(R_{i-1})} \deg_{G(R_{i-1})}(e))$
- Let e be a Voronoi edge of $V(R_i)$ and let s be a site in $S \setminus R_i$ which conflicts e.
- The conflict relation (e, s) will be counted only once since the counting only occured when e is removed
 - Let s_j be the earliest site in the sequence which conflicts with e. Then (e, s) will be counted in $\deg_{G(R_{i-1})}(e)$
- Time proportional to the number of conflict relations between Voronoi edges in $\bigcup_{2 \le i \le n} V(R_i)$ and sites in S
- The expected size of conflict history is $-C_n + \sum_{1 \leq i \leq n} (n-j+1)p_j$
 - $-C_n$ is the expected size of $\bigcup_{2 \le i \le n} V(R_i)$
 - $-p_j$ is the expected number of Voronoi edges defined by the same two sites in $V(R_j)$
- Since $C_n = O(n)$ and $p_j = O(1/j)$, the expected run time is $O(n \log n)$