Lattices and Minkowsky’s Theorem

Integer Lattices
A lattice point in the integer lattice Z¢ is a point in R? with integer coordi-
nates.

Minkowski’s Theorem

Let C C RY be symetric around the origin (i.e., C = —C), convex, and
bounded, and suppose that vol(C) > 2.

Then C' contains at least one lattice point different from 0.

Claim

Let C' be 1C, ie., C'= {3z |z € C}.

There exists a nonzero integer vector v € Z4\ {0} such that C'N(C"+v) # 0
i.e., C" and a translate of C’ by an intger vector intersect.

Sketch of proof
e By contradiction; suppose the claim is false.
e Let R be a large integer number.

e Consider the family C of translates of C’ by the integer vectors in the cube
[— R, R]* (See figure in the next page):

C={C'"+v|ve[-R R*"NZY

e By assumption, each such translate is disjoint from C’, and every two of
thse translates are disjoint as well.

e All translates are contained in the enlarged cube K = [-R— D, R+ D¢,
where D denotes the diameter of C”:

vol(K) = (2R + 2D)* > |C|vol(C") = (2R + 1)™vol(C"), and

oD — 1\
N < .
— vol(C") < (1+2R+1)

e The left hand side is arbitrarily close to 1 for sufficiently large R

e Since vol(C")2 %ol(C) > 1, the lefthand side, is a fixed number exceeding
1 by a certain amount independent of R.

e There exists a contradiction.
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Proof of Minkowski Theorem
e [ix a vector v € Z% as in the Claim, and choose a point x € C'N(C" +v).
oy —vel
e Since C is symetric, v — x € C’.
e Since (' is convex, the midpoint of the segment between x and v — x lies
in (', ie.,
1 1 1
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®© 0 000000000
®© 000000000000
®© 0000000000000 000
®© 0000000000000 00000
® 00 0000000000000 009000
® 0 0000000000000 0 00000
®© 0 0000000000000 000 0000
®© 0 0000000000 06000 000000
® 0000000000000 000 0000
® 0 0000000000000 0 000900
®© 0 0000000000000 0 00 00
® 0 0 0000000000000 0 00
0000000000006 06D00o0o0o0o
®© 0 0000000000000 000
® 0000000000000 0000

Example (A regular forest)

Let K be a circle of diamter 26 centered at the origin. Threes of diameter
0.16 grow at each lattice point within K except for the origin. You stand at
the origin. Prove that you cannot see outside this miniforest.

Sktech of Proof

e Assume the contrary that one could see outside along some
line [ passing through the origin.

e The strip S of width 0.16 with [ as the middle line contains
no lattice point in K except for the origin.

e In other words, the sysmetric convex set C' = K NS contains
no lattice points bu the origin.

e Since vol(C') > 4, it contradicts Minkowski’s theorem.

Proposition (Approximating an irrational number by a fraction)
Let a € (0,1) be a real number and N be a natural number. Then there
exists a pair of natural numbers m, n such that n < N and
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This proposition implies that there are infinitely many pairs m, n such that

\a——\<

a—I < 2, which is a basic and well-known result in elemantary numner
theory
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Proof of the Proposition
e Consider the set
1 1 1
C:{(x,y)ERQI—N—éngN%—Q, \oza:—y]<N}

e (' is symmetric.

e vol(C) = (2N + 1)% > 4.

e Therefore, C' contains some nonzero integer lattice point (n, m).
e By symmetry, assume n > 0.

e By the definition of C', n < N, and |an — m| < +. In other words,

m 1
‘a n‘ niN



General Lattices

Let 21, 29, .. ., zq be a d-tuple of linearly independent vectors in R

The lattice with basis {21, z2,..., 24} is the set of all linear combina-
tions of the z; with integer coefficients:

A:/\(zl, 29, ..., Zd):{i1Z1+’l;2Z2+"'+idZd‘ (il, (DT id)EZd}

Remark

A general lattice has in general many different bases.

For example, the sets {(1,0), (0,1)} and {(1,0), (3,1)} are both bases of
the “standard” lattice Z2.

Determinant of a lattice

Form a d x d matrix Z with the vector 21, ..., z4 as columns.
The determinant of the lattice A = A(zy, 29,..., 24), denoted by det A
is [det Z].

Geometrically, det A is the volume of the parallelepipied {a 21 +agzo+- - -+
Qqzq | aq, ..., 0q €10, 1]}




Remark

e det A is a property of the A, and it does not depend on the choice of basis
of A.

o If Z is the matrix of some basis of A, the matrix of every basis of A has
the form BU, where U is an integer matrix with determinant 41

Minkowski’s theorem for general lattices
Let A be a lattice in R?, and let C C RY be a symmetric convex set with
vol(C') > 2%det A. Then C contains a point of A different from 0.
Sketch of Proof
o Let {z1,..., 24} be a basis of A.

e Define a linear mapping f : R? — R? by f(z1, @9,..., Tq) = 2121 +
Tozo + -+ Xg2y.

e fis a bijection and A = f(Z9).
e For any convex set X,
vol(f(X)) = det(A)vol(X).
— If X is a cube, this trivially holds.

— A convex set can be approximated by a disjoint union of sufficiently
small cubes with arbitrary precision.

o Let C' be f7HO).
e (' is a symmetric convex set with vol(C”) = vol(C') /det A > 24,
e By Minkowski’s theorem, C’ contains a integer lattice v in Z¢.

e C contains f(v), and f(v) is a lattice point of A.

A seemingly more general definition of a lattice

What if we consider integer linear combinations of more than d vectors in R??
If we take d = 1 and the vectors v; = (1) and vy = /2, then the integer
linear combination ¢;v; + 29v9 are dense in the real line.

But it is not called a lattice.



Definition

A discrete subgroup of R? is a set A of R? such that whenever x,y € A,
then also x — y € A and such that the distance of any two distinct points of
A is at least ¢, for some fixed positive real number 6 > 0.

Remark

o If v, vo,..., v, € R?are vectors with rational coordinates,
the set A of all their integer linear combinations is a discrete
subgroup of R?.

e Any discrete subgroup of R? whose linear span is all of R? is
a general lattice. (The following theorem)

Lattice Basis Theorem

Let A C R? be a discrete group of R? whose linear span is R?.

Then A has a basis: there exists d linearly independent vectors
21, 29, .., zq € RYsuch that A = A(z, 2,..., 2).

e Prove by induction

e Consider 2, 1 < 7 < d + 1, and assume linearly independent vectors
21, Z9,..., %1 have already constructed:

— Let F;_; denoetes the (i — 1)-dimensional subspace spanned by
21y 29y .y Ziq.

— All points of A lying in F;_; can be written as integer linear combina-
tions of 21, 29,..., zi_1.

o If i = d+ 1, the statement of the theorem holds.
e So consider 7 < d and construct z;

e Since A generates RY, there exists a vector w € A not lying in the subspace
Fiq.

e Let P be i-dimensional parallelepiped determined by z1, 29,..., 2,1 and
by w:

P={ozi+aezo+ - +a1zi1+ow | aq,..., a5 €1[0,1]}



e Among all the points of A lying in P but not in F;_;, choose one nearest
to F;_1 and call it z;.

e If the points of AN P are written in the from o121 +aoz9+- - -4+ a;_12,-1+
o;w, z; 1s the w with smallest «;.

e Let F; be the linear space of z1,...,2;. Then, if a point v € A lies in
F;, v can be written as 3121 + 8929 + -+ - + §;2; for some real numbers

617”'752'-

e We will prove that all §;, for 1 < j < 4, are all integers, leading to the
theorem

e Let 7, be the fractional part of 3;, for 1 < 7 <7 ie., v, =6; — | 5]
e Let v/ be vi21 + Y929 + - - - + iz

e v/ must belong to A since v and v’ differ by an integer linear combination
of vectors of A.

e Since 0 < 7; < 1, v’ lies in the parallelepiped P.
e We must have ~; = 0; otherwise, v" would be nearer to F;_; than z;.

e Hence v € AN F;_1, and by the inductive hypothesis, we also get that all
the other «y; are 0.

e 50 all the §; are integers.



Remark

A general lattice can also be defined as a full-dimensional discrete subgroup
of RY.

Applications

Two-Square Theorem
Each pime p = 1( mod 4) can be wriited as a sum of two squares:

p=a*+V,a,beZ.

Definition
An integer a is called a quadratic residue modulo p if there exists an

integer x such that

2> = a ( mod p).

Otherwise, g is a quadratic nonresidue modulo p.

Lemma
If p is a prime with p = 1 ( mod 4), then -1 is a quadratic residue modulo p.

e Let F' be the field of residue classes modulo p, and let F* be F'\ {0}.
e ;> = 1 has two solutions in F', namely, i = 1 and i = —1.

e For any 7+ # &1, there exists exactly one 7 # ¢ with ¢ = 1, namely,
J =141 is the inverse element in F'.

e Therefore, all the elements of F™*\ {—1, 1} can be divided into pairs such
that product of elements in each pair is 1.
e(p—1)!=1-2---(p—1)=—1( mod p).

2

e Suppose that contradiction that the equation 7 = —1 has no solution in

F.

e All the elements in F* can be divided into pairs such that the product of
the elements in each pair is -1.

e There are (p — 1)/2 pairs, which is an even number.

e Hence (p — 1) = (=1)P=1/2 = 1 a contradiction.



Proof of Two-square theorem
e Choose a number ¢ such that ¢*> == 1( mod p).
e Consider the lattice A = A(z1, 29), where 21 = (1, ¢) and 2z, = (0, p).
o det A =p.
e Consider a disk C' = {(z, y) € R* | 2% + ¢y* < 2p}.
e The arca of C' is 27rp > 4p = 2% det A.

e By Minkowski’s theorem for general lattices, C' contains a point (a,b) €
A\ {0}
e We have 0 < a® + b? < 2p.

e At the same time, (a,b) = iz; + jzo for some i, j € Z* ie., a = i,
b=1q+ jp.

o 0’ +V° = i*+(iq+7jp)* = > +i*¢* +2iqjp+5*p® = i*(1+¢*) = 0( mod p).
e Therefore a? + b* = p.



