
Lattices and Minkowsky’s Theorem

Integer Lattices

A lattice point in the integer lattice Zd is a point in Rd with integer coordi-

nates.

Minkowski’s Theorem

Let C ⊆ Rd be symetric around the origin (i.e., C = −C), convex, and

bounded, and suppose that vol(C) > 2d.

Then C contains at least one lattice point different from 0.

Claim

Let C ′ be 1
2C, i.e., C ′ = {12x | x ∈ C}.

There exists a nonzero integer vector v ∈ Zd\{0} such that C ′∩(C ′+v) 6= ∅;
i.e., C ′ and a translate of C ′ by an intger vector intersect.

Sketch of proof

• By contradiction; suppose the claim is false.

• Let R be a large integer number.

• Consider the family C of translates of C ′ by the integer vectors in the cube

[−R,R]d (See figure in the next page):

C = {C ′ + v | v ∈ [−R,R]d ∩ Zd}

• By assumption, each such translate is disjoint from C ′, and every two of

thse translates are disjoint as well.

• All translates are contained in the enlarged cube K = [−R−D,R+D]d,

where D denotes the diameter of C ′:

vol(K) = (2R + 2D)d ≥ |C|vol(C ′) = (2R + 1)dvol(C ′), and

→ vol(C ′) ≤
(

1 +
2D − 1

2R + 1

)d

.

• The left hand side is arbitrarily close to 1 for sufficiently large R

• Since vol(C ′)2−dvol(C) > 1, the lefthand side, is a fixed number exceeding

1 by a certain amount independent of R.

• There exists a contradiction.



Proof of Minkowski Theorem

• Fix a vector v ∈ Zd as in the Claim, and choose a point x ∈ C ′∩ (C ′+v).

• x− v ∈ C ′.

• Since C ′ is symetric, v − x ∈ C ′.

• Since C ′ is convex, the midpoint of the segment between x and v− x lies

in C ′, i.e.,
1

2
x +

1

2
(v − x) =

1

2
v ∈ C ′



Example (A regular forest)

Let K be a circle of diamter 26 centered at the origin. Threes of diameter

0.16 grow at each lattice point within K except for the origin. You stand at

the origin. Prove that you cannot see outside this miniforest.

Sktech of Proof

• Assume the contrary that one could see outside along some
line l passing through the origin.

• The strip S of width 0.16 with l as the middle line contains
no lattice point in K except for the origin.

• In other words, the sysmetric convex set C = K ∩S contains
no lattice points bu the origin.

• Since vol(C) > 4, it contradicts Minkowski’s theorem.

Proposition (Approximating an irrational number by a fraction)

Let α ∈ (0, 1) be a real number and N be a natural number. Then there

exists a pair of natural numbers m, n such that n ≤ N and

|α− m

n
| < 1

nN
.

This proposition implies that there are infinitely many pairs m, n such that

α − m
n < 1

n2
, which is a basic and well-known result in elemantary numner

theory.
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Proof of the Proposition

• Consider the set

C = {(x, y) ∈ R2 | −N − 1

2
≤ x ≤ N +

1

2
, |αx− y| < 1

N
}

• C is symmetric.

• vol(C) = (2N + 1) 2
N > 4.

• Therefore, C contains some nonzero integer lattice point (n, m).

• By symmetry, assume n > 0.

• By the definition of C, n ≤ N , and |αn−m| < 1
N . In other words,

|α− m

n
| < 1

nN
.



General Lattices

Let z1, z2, . . . , zd be a d-tuple of linearly independent vectors in Rd.

The lattice with basis {z1, z2, . . . , zd} is the set of all linear combina-

tions of the zi with integer coefficients:

Λ = Λ(z1, z2, . . . , zd) = {i1z1 + i2z2 + · · · + idzd | (i1, i2, . . . , id) ∈ Zd}

Remark

A general lattice has in general many different bases.

For example, the sets {(1, 0), (0, 1)} and {(1, 0), (3, 1)} are both bases of

the “standard” lattice Z2.

Determinant of a lattice

Form a d× d matrix Z with the vector z1, . . . , zd as columns.

The determinant of the lattice Λ = Λ(z1, z2, . . . , zd), denoted by det Λ

is |det Z|.
Geometrically, det Λ is the volume of the parallelepipied {α1z1 +α2z2 + · · ·+
αdzd | α1, . . . , αd ∈ [0, 1]}.

z1

z2



Remark

• det Λ is a property of the Λ, and it does not depend on the choice of basis

of Λ.

• If Z is the matrix of some basis of Λ, the matrix of every basis of Λ has

the form BU , where U is an integer matrix with determinant ±1

Minkowski’s theorem for general lattices

Let Λ be a lattice in Rd, and let C ⊆ Rd be a symmetric convex set with

vol(C) > 2ddet Λ. Then C contains a point of Λ different from 0.

Sketch of Proof

• Let {z1, . . . , zd} be a basis of Λ.

• Define a linear mapping f : Rd → Rd by f (x1, x2, . . . , xd) = x1z1 +

x2z2 + · · · + xdzd.

• f is a bijection and Λ = f (Zd).

• For any convex set X ,

vol(f (X)) = det(Λ)vol(X).

– If X is a cube, this trivially holds.

– A convex set can be approximated by a disjoint union of sufficiently

small cubes with arbitrary precision.

• Let C ′ be f−1(C).

• C ′ is a symmetric convex set with vol(C ′) = vol(C)/det Λ > 2d.

• By Minkowski’s theorem, C ′ contains a integer lattice v in Zd.

• C contains f (v), and f (v) is a lattice point of Λ.

A seemingly more general definition of a lattice

What if we consider integer linear combinations of more than d vectors in Rd?

If we take d = 1 and the vectors v1 = (1) and v2 =
√

2, then the integer

linear combination i1v1 + i2v2 are dense in the real line.

But it is not called a lattice.



Definition

A discrete subgroup of Rd is a set Λ of Rd such that whenever x, y ∈ Λ,

then also x− y ∈ Λ and such that the distance of any two distinct points of

Λ is at least δ, for some fixed positive real number δ > 0.

Remark

• If v1, v2, . . . , vn ∈ Rd are vectors with rational coordinates,
the set Λ of all their integer linear combinations is a discrete
subgroup of Rd.

• Any discrete subgroup of Rd whose linear span is all of Rd is
a general lattice. (The following theorem)

Lattice Basis Theorem

Let Λ ⊂ Rd be a discrete group of Rd whose linear span is Rd.

Then Λ has a basis: there exists d linearly independent vectors

z1, z2, . . . , zd ∈ Rd such that Λ = Λ(z1, z2, . . . , zd).

• Prove by induction

• Consider i, 1 ≤ i ≤ d + 1, and assume linearly independent vectors

z1, z2, . . . , zi−1 have already constructed:

– Let Fi−1 denoetes the (i − 1)-dimensional subspace spanned by

z1, z2, . . . , zi−1.

– All points of Λ lying in Fi−1 can be written as integer linear combina-

tions of z1, z2, . . . , zi−1.

• If i = d + 1, the statement of the theorem holds.

• So consider i ≤ d and construct zi

• Since Λ generates Rd, there exists a vector w ∈ Λ not lying in the subspace

Fi−1.

• Let P be i-dimensional parallelepiped determined by z1, z2, . . . , zi−1 and

by w:

P = {α1z1 + α2z2 + · · · + αi−1zi−1 + αiw | α1, . . . , αi ∈ [0, 1]}



Fi−1

0

zi−1
zi

w

P

• Among all the points of Λ lying in P but not in Fi−1, choose one nearest

to Fi−1 and call it zi.

• If the points of Λ∩P are written in the from α1z1+α2z2+· · ·+αi−1zi−1+

αiw, zi is the w with smallest αi.

• Let Fi be the linear space of z1, . . . , zi. Then, if a point v ∈ Λ lies in

Fi, v can be written as β1z1 + β2z2 + · · · + βizi for some real numbers

β1, . . . , βi.

• We will prove that all βj, for 1 ≤ j ≤ i, are all integers, leading to the

theorem

• Let γj be the fractional part of βj, for 1 ≤ j ≤ i, i.e., γj = βj − bβjc.

• Let v′ be γ1z1 + γ2z2 + · · · + γizi.

• v′ must belong to Λ since v and v′ differ by an integer linear combination

of vectors of Λ.

• Since 0 ≤ γj < 1, v′ lies in the parallelepiped P .

• We must have γi = 0; otherwise, v′ would be nearer to Fi−1 than zi.

• Hence v′ ∈ Λ∩Fi−1, and by the inductive hypothesis, we also get that all

the other γj are 0.

• So all the βj are integers.



Remark

A general lattice can also be defined as a full-dimensional discrete subgroup

of Rd.

Applications

Two-Square Theorem

Each pime p ≡ 1( mod 4) can be wriited as a sum of two squares:

p = a2 + b2, a, b ∈ Z.

Definition

An integer a is called a quadratic residue modulo p if there exists an

integer x such that

x2 ≡ a ( mod p).

Otherwise, q is a quadratic nonresidue modulo p.

Lemma

If p is a prime with p ≡ 1 ( mod 4), then -1 is a quadratic residue modulo p.

• Let F be the field of residue classes modulo p, and let F ∗ be F \ {0}.

• i2 = 1 has two solutions in F , namely, i = 1 and i = −1.

• For any i 6= ±1, there exists exactly one j 6= i with ij = 1, namely,

j = i−1 is the inverse element in F .

• Therefore, all the elements of F ∗ \ {−1, 1} can be divided into pairs such

that product of elements in each pair is 1.

• (p− 1)! = 1 · 2 · · · (p− 1) ≡ −1 ( mod p).

• Suppose that contradiction that the equation i2 = −1 has no solution in

F .

• All the elements in F ∗ can be divided into pairs such that the product of

the elements in each pair is -1.

• There are (p− 1)/2 pairs, which is an even number.

• Hence (p− 1)! ≡ (−1)(p−1)/2 = 1, a contradiction.



Proof of Two-square theorem

• Choose a number q such that q2 ≡= 1( mod p).

• Consider the lattice Λ = Λ(z1, z2), where z1 = (1, q) and z2 = (0, p).

• det Λ = p.

• Consider a disk C = {(x, y) ∈ R2 | x2 + y2 < 2p}.

• The area of C is 2πp > 4p = 22 det Λ.

• By Minkowski’s theorem for general lattices, C contains a point (a, b) ∈
Λ \ {0}.

• We have 0 < a2 + b2 < 2p.

• At the same time, (a, b) = iz1 + jz2 for some i, j ∈ Z2, i.e., a = i,

b = iq + jp.

• a2+b2 = i2+(iq+jp)2 = i2+i2q2+2iqjp+j2p2 ≡ i2(1+q2) ≡ 0( mod p).

• Therefore a2 + b2 = p.


