
2. Trapezoidal decomposition

N : a set of n line segments (possibly unbounded)

Vertical Trapezoidal Decomposition H(N) of N

• Pass a vertical attachment through every endpoint or point of

intersection

• Each vertical attachement exteneds upwards and downwards

until it hit another segment or if no such segment exist, it

extends to infinity

Properties of H(N)

• Each cell is called a trapezoid and consists of at most 4 edges

(either triangle or quadrilateral)

• Each cell is defined by at most four line segments

σ σ

The Sorting Problem:

Find the vertical trapezoidal decomposition H(N)

The Search Problem:

Associate a search structure H̃(N) withH(N), so that for a give query

point q, locating which trapezoid of H(N) it belongs to is efficient

Randomized Incremental Construction:

• Generate a random seqeuence S1, S2, . . . , Sn of N

• Construction H(N) by iteratively adding S1, S2, . . . , Sn, i.e., computing

H(N 0), H(N 1), . . . , H(Nn) iteratively, where N 0 = ∅ and N i = {Sj |
1 ≤ j ≤ i}

2.1 Conflict List

Assume H(N i) are avaiable

Conflict relations are defined between trapezoids of H(N i) and end-

points of line segments of N \N i

• For each trapezoid of H(N i), store the endpoints of line segments of

N \N i located in it

• For each endpoint of N \N i, store the trapzezoid of H(N i) to which

it belongs

Adding S = Si+1 to obtain H(N i+1)

1. Find out the trapezoid including an endpoint p of Si+1

2. Travel from p to trace out all the trapezoid of H(N i) intersecting S

3. Spilt all the traced trapezoids by S

4. Combine adjacent trapezoids whose upper and lower edges are adja-

cent to the same segments

S
p

S
p

Before Inserting S

R0R1

R2R3

R4

R5

σ1 σ2

S
p

σ

Split

Merge (e.g., merging σ1 and σ2 into σ)

How to trace R0, R1, . . . , Rj of H(N i) intersecting S

Let f be the current traced trapezoid during the travel

• Traverse the boundary of δ to find the exit point

• Time proportional to face-length(f), which is number of vertices of f

in H(N i)

S

f
entrance

exit

face-length(f)=10

How to split an trapezoid f

• If S intersect the upper or lower side of f , raise a vertical attachment

from the intersection within f

• If an endpoint of S is inside f , raise a vertical attachement from the

endpoint within f

• At most four new trapezoid

S
f1

f2

f3

S

f1

f2

f3
f4

S
f1

f2

f3

S

f1

f2

f3

f4

Why and How to Merge

• Two new trapezoids from difference trapezoids in H(N i) may belong

to the same trapezoid in H(N i+1)

• If two adajcent new trapezoids share the same top and bottom segments,

merging them takes O(1) time

f1 f2 g1 g2

g1 and g2 belong to f1 and f2, respectively, and will be merged

Proposition 2.1

Once we know the trapezoid in H(N i) containing one endpoint of

S = Si+1, H(N i) can be updated to H(N i+1) in time proportional

to
∑

f face-length(f), where f ranges over all trapezoids in H(N i)

intersecting S.

How to find the starting trapezoid

• Conflict Lists

• O(1) time by the “edge” from an endpoint of S to the conflicted

trapezoid

How to update conflict list

For a trapezoid f , L(f) is endpoints of N \N i in f , and l(f) is |L(f)|

• Split: If f is split into f1, . . . , fi, i ≤ 4, for each point p ∈ L(f),

decide fi which p belongs to in total O(l(f)) time

• textbfMerge: O(1) time

Proposition 2.2

The cost of updating conflict lists if O(
∑

f l(f)), where f ranges over all

trapezoids in H(N i) intersecting S and l(f) denotes the conflict size of f .

Backward Analysis for Inserting S

Originally: adding S into H(N i)

O(
∑

f face-length(f) + l(f))

where f ranges over all trapezoids in H(N i) intersecting S

=

Now: removing S from H(N i+1)

O(
∑

g face-length(g) + l(g))

where g ranges over all trapezoids in H(N i+1) adjacent to S

Since S1, S2, . . . , Sn is a randon sequence of N ,

each line segment in N i+1 is equally likely to be S.

Expected cost is proportional to

1
i+1

∑
S∈N i+1

∑
g face-length(g) + l(g)

where g ranges over all trapezoids in H(N i+1) adajcent to S

It equals to n−i+|H(N i+1)|
i+1 = O(n+ki+1

i+1)

where g denotes the number of intersection among the segments in

N i+1 and |H(N i+1)| denotes the total size of H(N i+1)

because

• Each trapezoid in H(N i+1) is adjacent to at most four segments

in N i+1,

→
∑

S∈N i+1

∑
g face-length(g) ≤ 4|H(N i+1)|

• Total conflicts
∑

S∈N i+1

∑
g l(g) is 2(n− i)

• |H(N i+1)| = O(i + 1 + ki+1)

Lemma 2.1:

Fix j ≥ 0, the expected value of kj, assuming that N j is a random

sample of N of size j, is O(kj2/n2)

proof is an exercise

Theorem 2.1

A trapezoidal decomposition formed by n segments in the plane can

be constructed in O(kn log n) expected time. Here k denotes the total

number of intersections among the n segments

E[
∑n−1

i=0 O(
n+ki+1
i+1)] =

∑n−1
i=0 E[O(

n+ki+1
i+1)]

=
∑n−1

i=0 O(n+ki
2/n2

i+1)] = (
∑n−1

i=0
n
i+1) + (

∑n−1
i=0 ki

2/n2)

= O(n logn+ k)

Two questions for this randomized incremental construction based on

conflict lists

• How about search structure: locate a query point in a trapezoid of

H(N)

• Not a on-line algorithm because the conflict lists depend on N \N i

2.2 History Graph

On-Line Algorithm and Search Structure

• Recall Random Binary Tree of Quick-Sort

• Killer and Creator

– All trapezoids in H(N i) \H(N i+1), Si+1 is their killer

– All trapezoids in H(N i+1) \H(N i), Si+1 is their creator

history(i) (= H̃(N i)) is a directed graph G(V,E)

• V : all trapezoids appeared in H(N 0), H(N 1), . . . , H(N i)

• E: an arc connectes u to v if

– The killer of v is the creator of u,

i.e., the insertion of S kills u and creates v.

– v and u intersect each other

– u is called a parent of v, and v is called a child of u.

Properties of history(i) (= H̃(N i))

• Its leaves form H(N i)

• H(N 0) is the only vertex without in-going edges and called the root

• It is an acyclic graph

• Each node has at most 4 out-going edges

• If a point p is contained in a trapezoid v, there is a path from the

root to v along which each trapezod contains p

h1
h2

h3
h4

h5
h6

h7 h8 h9g1

g1

g2

g4

g3

f
f

H̃(N0)

f

H̃(N1)

g1 g2 g3 g4

h1 h2 h3 h4 h5 h6 h7 h8 h9

f

g1 g2 g3 g4

H̃(N2)

Adding Si+1 into H(N i) through H̃(N i)

1. Locating an endpoint p of Si+1 by H̃(N i)

• Starting from the root until a leaf is reached, check which child

contains p and search the child

h1
h2

h3
h4

h5
h6

h7 h8 h9g1

h1 h2 h3 h4 h5 h6 h7 h8 h9

f

g1 g2 g3 g4

H̃(N2)

p

2. Trace out all trapezoids intersecting S as we did before by an auxil-

iary structure:

• Each leaf of H̃(N i) stores its adjacent trapezoids in H(N i)

3. Build new edges between trapezoids in H(N i) \ H(N i+1) between

trapezoids in H(N i+1) \H(N i)

• Split : If a trapezoid f is split into, g1, . . . , gj, j ≤ 4, for 1 ≤ l ≤ j,

there is an arc from f to gl.

• Merge: If g1 and g2 are merged into g, for each parent f of g1 and

g2, there is an arc from f to g

Lemma 2.2

Locating a point p in a trapezoid δ in H(N i) takes O(log i) expected

time using H̃(N i)

• Since each trapezoid has at most 4 childen, the time of location is

proportional to the number of trapezoids in H̃(N i) which contain p

• We charge an involved trapezoid to its creator. In other words, Sj

is charged if and only if p is contained in an trapezoid in H(N j)

adjacent to Sj.

• Since a trapezoid is adjacent to at most 4 segments and S1, S2, . . . , Sn
is a random sequence ofN , the probability in which Sj will be charged

is at most 4/j.

• Expected time of locating p in a trapezoid δ in H(N i) is at most

1 +
∑i

j=1 4/j = O(log i)

Lemma 2.3

Inserting Si+1 into H̃(N i) takes O(log i + k(i + 1)/n2) expected time

• Step 1 takes O(log i) expected time

• Step 2 and Step 3 take time proportional to the number of intersection

between H(N i) and Si+1 (as we do with conflict lists)

• The expected number of intersections between H(N i) and Si+1 is

O(k(i + 1)/n2)

– The expected number of intersection between N i+1 is O(k(i +

1)2/n2).

Theorem 2.2

Vertical trapezoidal composition formed by n segment in the plane can

be computed in O(k + n log n) expected time by an on-line algorithm

•
∑n

i=1O(log i + ki/n2) = O(n log n + k)

Point Location Query:

Given a planar subdivision, process it such that for any query point q, the

region to which q belong in the planar subidivision can be answered efficiently.

Solution: Let N be the edges of the planar subvisions.

1. Use history graph to compute the vertical trapezoidal decomposition

H(N) of N . Thus we have H̃(N).

2. For a query point q, use H̃(N) to answer to which in H(N) trapezoid q

belongs, and answer the region contains the trapezoid.

Time Complexity:

• Preprocessing Time: expected O(n log n)

• Query Time : expected O(log n)

Difference between conflict lists and history graph

• Conflict graph:

the number of conflict relations between all trapezoids ∆ in H(N i)

adjacent to Si and N \N i.

• History graph:

the number of conflict relactions between Si and trapezoids ∆ in

H̃(N i−1)

• If Si conflicts a trapezoid ∆ created by Sj in H(N j), j < i, ∆ and

Si form a conflict relaction in the conflict lists between H(N j) and

N \N j

• The two total numbers are the same

• (Si,∆) is a conflict relation

– Conflict Lists: charged when ∆ is created

– History Graph: charged when Si is inserted.

• Conflict lists charge first, and history graph charges later.

• What not use history graph?

