Zusammenfassung: Prioritätssuchbaum

Elmar Langetepe University of Bonn

k-dimensionaler Range Tree

Theorem 3.11: Ein k-dimensionaler Bereichsbaum für n Punkte im \mathbb{R}^k kann in Zeit $O(n(\log n)^{k-1})$ mit Platz $O(n(\log n)^{k-1})$ aufgebaut werden. Eine Bereichsanfrage mit Hyperrechteck $q \subset {\rm I\!R}^k$ kann in Zeit $O(a + (\log n)^k)$ beantwortet werden. Dabei ist a die Größe der Antwort.

Speicherplatz Punkt $p = (x_1, x_2, \dots, x_k)$

- Baum T^1 :
 - 1) Baum T^1 einmal im Blatt
 - 2) In $\log n$ vielen Intervallen $I(v_i)$ von T^1
- Induktiv, Aufsummieren!

k-dimensionaler Range Tree

Theorem 3.11: Ein k-dimensionaler Bereichsbaum für n Punkte im \mathbb{R}^k kann in Zeit $O(n(\log n)^{k-1})$ mit Platz $O(n(\log n)^{k-1})$ aufgebaut werden. Eine Bereichsanfrage mit Hyperrechteck $q \subset \mathbb{R}^k$ kann in Zeit $O(a + (\log n)^k)$ beantwortet werden. Dabei ist a die Größe der Antwort.

Query! $q = (I_1, I_2, \dots, I_k)$

- T^1 : Intervalle $I(v_i)$ die I_1 ausschöpfen max. $2\log n$ viele
- Induktiv: $O((\log n_i)^{k-1} + a_i)$ für $T_{v_i}^{k-1}$
- Aufsummieren!

k-dimensionaler Range Tree

Theorem 3.11: Ein k-dimensionaler Bereichsbaum für n Punkte im \mathbb{R}^k kann in Zeit $O(n(\log n)^{k-1})$ mit Platz $O(n(\log n)^{k-1})$ aufgebaut werden. Eine Bereichsanfrage mit Hyperrechteck $q \subset {\rm I\!R}^k$ kann in Zeit $O(a + (\log n)^k)$ beantwortet werden. Dabei ist a die Größe der Antwort.

Beweis: Aufbau!

- 1. Sortieren: k Listen L_1, L_2, \ldots, L_k , $O(kn \log n)$
- 2. Aufteilungsschritt n_i für Knoten v_i
- 3. Aufbau, rekursiv!

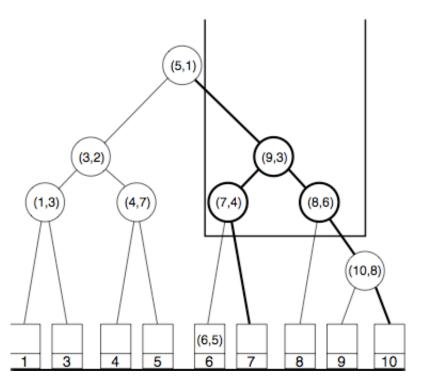
Induktiv: $O(n_i \log n_i)^{k-2}$ für $T_{v_i}^{k-1}$

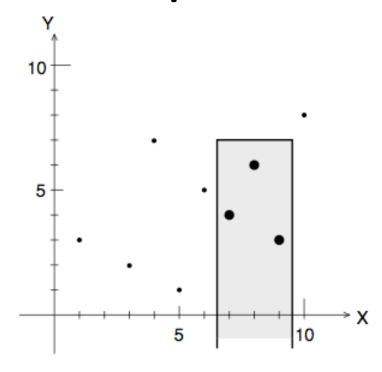
Aufsummieren: $\sum_{i=1}^{2n-1} n_i \in O(n \log n)$

Prioritätssuchbaum

- Einfache Struktur für Punkte in der Ebene
- Halbstreifenanfrage $H = [x_1, x_2] \times (-\infty, y]$
- Finde Punkte aus D in H
- Platzoptimal und effizient!
- ullet Eindimensionaler Bereichsbaum für X Koordinaten
- Heap für Y-Koordinaten

Prioritätssuchbaum Beispiel





- ullet 1. Jeder Punkt auf dem Weg zu seiner X-Koordinate
- ullet 2. Punkte entlang des Pfades nach Y-Koordinaten
- 3. So nah wie möglich an der Wurzel

Ergebnis

Theorem 3.14 Ein Prioritätssuchbaum für n Punkte in der Ebene kann in Zeit $O(n \log n)$ aufgebaut werden. Er bentigt O(n) viel Platz. Eine Halbstreifenanfrage kann in Zeit $O(a + \log n)$ beantwortet werden. Dabei ist a die Größe der Antwort.

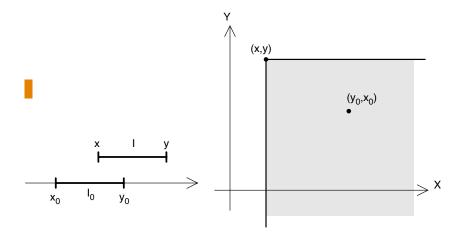
Beweis: Aufbau! Geht immer!

- ullet X-sortiertes Skelett, nach aufsteigenden Y-Koordinaten einfügen
- Induktiv: Wurzel, Teilbäume v_1 , v_2

Query

- X-Grenzen in $\log n$,
- Grenzen entlanggehen: X-Koord. im Innern ok!
- Nach Y-Koord, bei Tiefe Y aufhören!

Anwendung Schnittanfrage mit Intervallen



Lemma 3.16 Seien $I_0 = [x_0, y_0]$ und I = [x, y] zwei Intervalle, dann gilt: I_0 überlappt mit $I \iff x \leq y_0$ und $x_0 \leq y$

Ergebnis Schnittanfrage

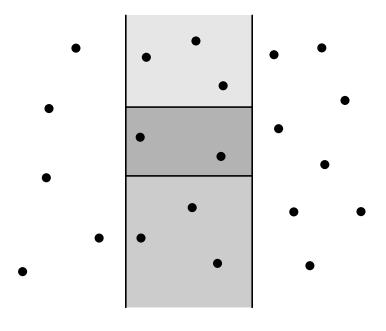
Theorem 3.17 Man kann n Intervalle mit Platz O(n) so abspeichern, dass sich eine Überlappungsanfrage eines Intervalls I_0 in Zeit $O(a + \log n)$ beantworten läßt. Dabei ist a die Größe der Antwort.

Intervalle in Punkte übertragen.

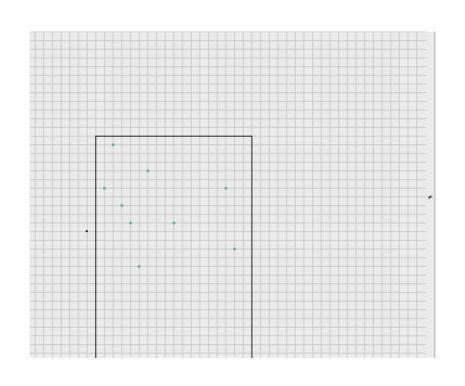
Anfrage mit Viertelebene $[x_0, \infty) \times (-\infty, y_0]$.

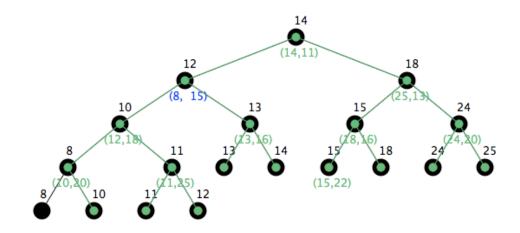
Anwendung Rechteckanfrage

Zwei Halbstreifenanfragen ergeben eine Rechteckanfrage! Problem: Nicht output-sensitiv!



Beispiel: Prioritätssuchbaum Query Rechteck?



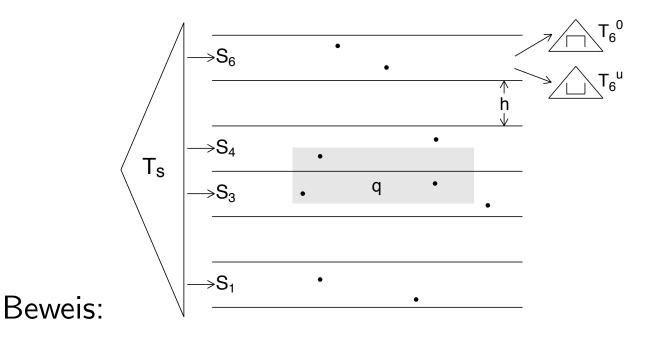


Anfrage: $[9,27]\times(-\infty,26]$, alle grünen Punkte

Rechteckanfrage: $[9,27] \times [24,26]$, nur Knoten (11,25) aber alle absuchen

Anwendung Rechteckanfrage mit fester Höhe

Theorem 3.18 Sei h>0 fest. n Punkte in der Ebene lassen sich so mit Platz O(n) abspeichern, dass jede Rechteckanfrage mit Höhe h in Zeit $O(\log n + a)$ (a Größe der Antwort) beantwortet werden können.



Buch Kapitel

Kapitel 3.3.3 Seite 140 oben – S. 147 mitte