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@ Voronoi Diagrams and Delaunay Triangulations
e Properties and Duality

@ Randomized Incremental Construction
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Voronoi Diagram

@ Given a set S of n point sites, Voronoi Diagram V(S) is a
planar subdivision
@ Each region contains exactly one site p € S and is denoted
by VR(p, S).
@ For each point x € VR(p, S), p is its closest site in S.
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Voronoi Diagram

@ Given a set S of n point sites, Voronoi Diagram V(S) is a
planar subdivision

@ Each region contains exactly one site p € S and is denoted
by VR(p, S).
@ For each point x € VR(p, S), p is its closest site in S.
@ VR(p, S) is the locus of points closer to p than any other
site.
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@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.
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@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.
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e Two half-planes D(p, q) and D(q, p) separated by B(p, q).
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@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.
o D(p,q)={x € R? | d(x.p) < d(x,q)}.
e Two half-planes D(p, q) and D(q, p) separated by B(p, q).
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@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.
o D(p,q)={x € R? | d(x.p) < d(x,q)}.
e Two half-planes D(p, q) and D(q, p) separated by B(p, q).

D(p,q) D(q,p)
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Voronoi Region

@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.

® D(p,q)={x € R?| d(x,p) < d(x,q)}.
e Two half-planes D(p, q) and D(q, p) separated by B(p, q).

VR(p,S)= () D(p.q).
qQES,q#p

/
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Voronoi Region

@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.

® D(p,q)={x € R?| d(x,p) < d(x,q)}.
e Two half-planes D(p, q) and D(q, p) separated by B(p, q).

VR(p,S)= () D(p.q).
qES,q#p
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Voronoi Edge and Vertex

@ Voronoi Edge

e Common intersection between two adjacent Voronoi
regions VR(p, S) and VR(q, S)
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@ Voronoi Edge

e Common intersection between two adjacent Voronoi
regions VR(p, S) and VR(q, S)
e A piece of B(p, q)
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Voronoi Edge and Vertex

@ Voronoi Edge

e Common intersection between two adjacent Voronoi
regions VR(p, S) and VR(q, S)
e A piece of B(p, q)

@ Voronoi Vertex

e Common intersection among more than two Voronoi
regions VR(p, S), VR(q. S), VR(r, S), and so on.
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Growing Circle

@ Grow a circle from a point x on the plane
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e Hit one site p € S — x belongs to VR(p, S)
e Hit two sites p, g € S — x belongs to the Voronoi edge
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Growing Circle

@ Grow a circle from a point x on the plane
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Wavefront Model (Growth Model)

@ Grow circles from Vp € S at unit speed
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Wavefront Model (Growth Model)

@ Grow circles from Vp € S at unit speed

e x € R? s first hit by a circle from p — x belongs to VR(p, S)
e x € R? s first hit by two circles from p and g — x belongs
to a Voronoi edge between VR(p, S) and VR(q, S)
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Wavefront Model (Growth Model)

@ Grow circles from Vp € S at unit speed
e x € R? s first hit by a circle from p — x belongs to VR(p, S)
e x € R? s first hit by two circles from p and g — x belongs
to a Voronoi edge between VR(p, S) and VR(q, S)
e x € R? s first hit by three circles from p, g, and r — x is a
Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)

Voronoi Diagrams



Wavefront Model (Growth Model)

@ Grow circles from Vp € S at unit speed
e x € R? is first hit by a circle from p — x belongs to VR(p, S)
e x € R? s first hit by two circles from p and g — x belongs
to a Voronoi edge between VR(p, S) and VR(q, S)
e x € R?is first hit by three circles from p, g, and r — x is a
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Unbounded Region

@ VR(p, S) is unbounded if and only if p is a vertex of the
convex hull of S.
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@ VR(p, S) is unbounded if and only if p is a vertex of the
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Unbounded Region

@ VR(p, S) is unbounded if and only if p is a vertex of the
convex hull of S.
@ Select a point ¢ in the convex hull
e Shoot a ray C_/S fromctop
e For any point x € ch \ €p, x belongs to VR(p, S)
° c—ﬁ) extends to the infinity.

@ If Sis in convex position, V(S) is a tree.
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Unbounded Region

@ VR(p, S) is unbounded if and only if p is a vertex of the
convex hull of S.

@ Select a point ¢ in the convex hull

e Shoot a ray C_/S fromctop

e For any point x € ch \ €p, x belongs to VR(p, S)
° c—ﬁ) extends to the infinity.

@ If Sis in convex position, V(S) is a tree.
@ An unbounded Voronoi edge corresponds to a hull edge.
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Voronoi Diagram (Mathematic Definition)

@ Voronoi Diagram V/(S)

V(S) = R?\ (|J VR(p, S)) = | 9VR(p. S)
peS peS

e JOVR(p, S) is the boundary of VR(p, S)
® 9VR(p,S) £ VR(p, S)
e V/(S) is the union of all the Voronoi edges

@ Voronoi Edge e between VR(p, S) and VR(q, S)
e = 0VR(p, S)NdVR(q, S)
@ Voronoi Vertex v among VR(p, S), VR(q, S), and VR(r, S)

v = OVR(p, S) N OVR(q, S) N AVR(r, S)
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Complexity of V(S)

V(S) has O(n) edges and vertices. The average number of
edges of a Voronoi region is less than 6.

@ Add alarge curve I'
e [ only passes through unbounded edges of V(S)
e Cut unbounded pieces outside I
e One additional face and several edges and vertices.
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Complexity of V(S)

V(S) has O(n) edges and vertices. The average number of
edges of a Voronoi region is less than 6.

@ Euler's Polyhedron Formula: v —-e+f=1+c¢

o v: # of vertices, e: # of edges, f: # of faces, and c: #
number of connected components.

@ An edge has two endpoints, and a vertex is incident to at
least three edges.

e 3v<2e—v<2e/3

@ef=n+1andc=1
ev=14+c+e—-f=e+1-n<2¢/3—-e<3n-3
ee=v+f—-1-c=v+n—-1>38v/2—->v<2n-2

@ Average number of edges of a region < (6n—6)/n < 6
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Triangulation

Definition

Given a set S of points on the plane, a triangulation is maximal
collection of non-crossing line segments among S.

Q

Crossing (pq)
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Triangulation

Definition

Given a set S of points on the plane, a triangulation is maximal
collection of non-crossing line segments among S.

A
)\

Not Maximal (pg is allowable)
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Triangulation

Definition

Given a set S of points on the plane, a triangulation is maximal
collection of non-crossing line segments among S.

Triangulation

Voronoi Diagrams



Delaunay Edge

Definition

An edge pq is called Delaunay if there exists a circle passing
through p and g and containing no other point in its interior.

pq is Delaunay

Voronoi Diagrams



Delaunay Edge

Definition

An edge pq is called Delaunay if there exists a circle passing
through p and g and containing no other point in its interior.

pq is Delaunay

Voronoi Diagrams



Delaunay Edge

Definition

An edge pq is called Delaunay if there exists a circle passing
through p and g and containing no other point in its interior.

pq is NOT Delaunay
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Delaunay Triangulation

Definition

A Delaunay Triangulation is a triangulation whose edges are
all Delaunay.
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Delaunay Triangulation

Definition
A Delaunay Triangulation is a triangulation whose edges are
all Delaunay.

@ For each face, there exists a circle passing all its vertices
and containing no other point.
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General Position Assumption

@ No more than two point sites are colinear
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General Position Assumption

@ No more than two point sites are colinear
e V(S)is connected
@ No more than three point sites are cocircular
(At most three points are on the same circle)

e degree of each Voronoi vertex is exactly 3.
e Each face of the Delaunay triangulation is a triangle.
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General Position Assumption

@ No more than two point sites are colinear
e V(S)is connected

@ No more than three point sites are cocircular
(At most three points are on the same circle)
e degree of each Voronoi vertex is exactly 3.
e Each face of the Delaunay triangulation is a triangle.

@ There is a unique Delaunay triangulation.
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Duality

Under the general position assumption, the Delaunay
triangulation is a dual graph of the Voronoi diagram.

@ A site p <» a Voronoi region VR(p, S)
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Under the general position assumption, the Delaunay
triangulation is a dual graph of the Voronoi diagram.

@ A site p <» a Voronoi region VR(p, S)
@ A Delaunay edge pq <> a Voronoi edge between VR(p, S)
and VR(q, S)
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Under the general position assumption, the Delaunay
triangulation is a dual graph of the Voronoi diagram.

@ A site p <» a Voronoi region VR(p, S)

@ A Delaunay edge pq <> a Voronoi edge between VR(p, S)
and VR(q, S)

@ A Delaunay triangle Apqr < a Voronoi vertex among
VR(p, S), VR(q, S) and VR(r, S)
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Algorithms

@ Lower Bound for Time: Q(nlog n)
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Algorithms

@ Lower Bound for Time: Q(nlog n)
e Convex hull of S can be computed in linear time from V(S).
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Algorithms

@ Lower Bound for Time: Q(nlog n)
e Convex hull of S can be computed in linear time from V(S).

@ O(nlog n) time algorithms
e Plane Sweep Algorithm
e Divide and Conquer Algorithm

Voronoi Diagrams



Randomized Incremental Construction

@ General Idea
e Consider a random sequence of S, (s1, Sz, . .., Sn).
o Let Ribe {s1,...,si}
e Fromi=4toi=n—1,construct V(R;1) from V(R;) by
inserting s;1.
@ Tasks
e What is a configuration?
e What is a conflict relation?
e How to use conflict relations to insert a site?
e How to update conflict relations?

@ General Position Assumption

e No more than three sites are located on the same circle
— The degree of a Voronoi vertex is exactly 3

e No more than two points are located on the same line
— The Voronoi diagram is connected
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Configuration: A Voronoi edge

@ A Voronoi region can not be a configuration because it
could consist of O(n) edges, i.e., it is not defined by a
constant number of sites

@ Consider a Voronoi edge e between VR(p, S) and
VR(q, S)

° eC B(p,q)

e Assume e has two endpoints v and u. Then
v = VR(p, S) N VR(q, S)VR(r, S) and
u=VR(p,S)NVR(q, S)VR(s, S).

e eisdefinedbyp,q,r, s

e A Voronoi edge is defined by at most 4 sites.
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Conflict Relation

@ Asite t € S\ R conflicts with a Voronoi edge e between
VR(p, R) and VR(q, R) if en VR(t, RU {t}) # 0.
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Conflict Relation

@ Asite t € S\ R conflicts with a Voronoi edge e between
VR(p, R) and VR(q, R) if en VR(t, RU {t}) # 0.

enVR(r,Ru{r})=enVR(r,{p,q,r}) (Local Test)
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Insert a Site t

V(R)NVR(t,RuU{t})is atree

se
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@ Use the conflict list to find an edge which conflicts with ¢.
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Insert a Site t
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© Link the leaves of V(R) N VR(t, RU {t}) clockwise
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Insert a Site t

V(R)NVR(t,RuU{t})is atree

Se

@ Use the conflict list to find an edge which conflicts with t.
@ From the edge to find out V(R) N VR(t, RU {t})
© Link the leaves of V(R) N VR(t, RU {t}) clockwise
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Update Conflict Relations: Partial Edges

@ Consider an edge € of V(R U {t}) which belongs to an
edge e of V(R)

Any site s € S\ (R U {t}) in conflict with & will conflict with e.
That is, if € N VR(t, RU{t, s} # 0, en VR(s, RU {t}) # 0.

@ The set of sites in conflict with €' is a subset of the set of
sites in conflict with e

@ For each site in conflict with e, check if it conflicts with &’.
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Update Conflict Relations: Fully new edges

@ Consider an edge € of V(R U {t}) which does not belong
to any edge of V(R)

€ and a path of V(R) N VR(t, RU {t}) will form a cycle. Let P
be the path in V(R) N VR(t, RU{t}) which forms a cycle with €'.
Any site s € S\ (R U {t}) in conflict with & will conflict with one

edge along the path.

@ For each site in conflict with an edge of P, check if it
conflicts with ¢'.
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The number of updates

Each edge of V(R) which is destroyed due to the insertion of ¢
will be check at most 3 times.

@ An edge of V(R) contains at most one edge V(R U {t})
and belongs to at most two paths which form a cycle with
an edge of V(RU{t}) .

The time to insert t is proportional to the total size of the conflict
lists for the edges of V(R) which are destroyed due to the
insertion of ¢
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Thank You!!




