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Voronoi Diagram

Given a set S of n point sites, Voronoi Diagram V (S) is a
planar subdivision

1 Each region contains exactly one site p ∈ S and is denoted
by VR(p,S).

2 For each point x ∈ VR(p,S), p is its closest site in S.

VR(p,S) is the locus of points closer to p than any other
site.
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Voronoi Region

Bisector B(p,q)= {x ∈ R2 | d(x ,p) = d(x ,q)}.

D(p,q)= {x ∈ R2 | d(x ,p) < d(x ,q)}.

Two half-planes D(p,q) and D(q,p) separated by B(p,q).

VR(p,S) =
⋂

q∈S,q 6=p

D(p,q).

p

q

B(p, q)
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Voronoi Edge and Vertex

Voronoi Edge
Common intersection between two adjacent Voronoi
regions VR(p,S) and VR(q,S)

A piece of B(p,q)

Voronoi Vertex

Common intersection among more than two Voronoi
regions VR(p,S), VR(q,S), VR(r ,S), and so on.
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Growing Circle

Grow a circle from a point x on the plane

Hit one site p ∈ S → x belongs to VR(p,S)
Hit two sites p,q ∈ S → x belongs to the Voronoi edge
between VR(p,S) and VR(q,S)
Hit more than two sites p,q, r , . . . ∈ S → x is the Voronoi
vertex among VR(p,S), VR(q,S), VR(r ,S), . . .
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Wavefront Model (Growth Model)

Grow circles from ∀p ∈ S at unit speed

x ∈ R2 is first hit by a circle from p → x belongs to VR(p,S)
x ∈ R2 is first hit by two circles from p and q → x belongs
to a Voronoi edge between VR(p,S) and VR(q,S)
x ∈ R2 is first hit by three circles from p, q, and r → x is a
Voronoi vertex among VR(p,S), VR(q,S) and VR(r ,S)
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Unbounded Region

VR(p,S) is unbounded if and only if p is a vertex of the
convex hull of S.

Select a point c in the convex hull
Shoot a ray −→cp from c to p
For any point x ∈ −→cp \ cp, x belongs to VR(p,S)−→cp extends to the infinity.

If S is in convex position, V (S) is a tree.
An unbounded Voronoi edge corresponds to a hull edge.

p
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Voronoi Diagram (Mathematic Definition)

Voronoi Diagram V (S)

V (S) = R2 \ (
⋃
p∈S

VR(p,S)) =
⋃
p∈S

∂VR(p,S)

∂VR(p,S) is the boundary of VR(p,S)

∂VR(p,S) 6⊂ VR(p,S)

V (S) is the union of all the Voronoi edges

Voronoi Edge e between VR(p,S) and VR(q,S)

e = ∂VR(p,S) ∩ ∂VR(q,S)

Voronoi Vertex v among VR(p,S), VR(q,S), and VR(r ,S)

v = ∂VR(p,S) ∩ ∂VR(q,S) ∩ ∂VR(r ,S)
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Complexity of V (S)

Theorem
V (S) has O(n) edges and vertices. The average number of
edges of a Voronoi region is less than 6.

Add a large curve Γ
Γ only passes through unbounded edges of V (S)
Cut unbounded pieces outside Γ
One additional face and several edges and vertices.
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Complexity of V (S)

Theorem
V (S) has O(n) edges and vertices. The average number of
edges of a Voronoi region is less than 6.

Euler’s Polyhedron Formula: v − e + f = 1 + c
v : # of vertices, e: # of edges, f : # of faces, and c: #
number of connected components.

An edge has two endpoints, and a vertex is incident to at
least three edges.

3v ≤ 2e→ v ≤ 2e/3
f = n + 1 and c = 1

v = 1 + c + e − f = e + 1− n ≤ 2e/3→ e ≤ 3n − 3
e = v + f − 1− c = v + n − 1 ≥ 3v/2→ v ≤ 2n − 2

Average number of edges of a region ≤ (6n − 6)/n < 6
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Triangulation

Definition
Given a set S of points on the plane, a triangulation is maximal
collection of non-crossing line segments among S.

Crossing (pq)

p

q
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Triangulation

Definition
Given a set S of points on the plane, a triangulation is maximal
collection of non-crossing line segments among S.

Not Maximal (pq is allowable)
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Triangulation

Definition
Given a set S of points on the plane, a triangulation is maximal
collection of non-crossing line segments among S.

Triangulation
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Delaunay Edge

Definition
An edge pq is called Delaunay if there exists a circle passing
through p and q and containing no other point in its interior.

pq is Delaunay

p

q
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Delaunay Edge

Definition
An edge pq is called Delaunay if there exists a circle passing
through p and q and containing no other point in its interior.

pq is NOT Delaunay

p
q
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Delaunay Triangulation

Definition
A Delaunay Triangulation is a triangulation whose edges are
all Delaunay.

For each face, there exists a circle passing all its vertices
and containing no other point.
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General Position Assumption

1 No more than two point sites are colinear

V (S) is connected
2 No more than three point sites are cocircular

(At most three points are on the same circle)

degree of each Voronoi vertex is exactly 3.
Each face of the Delaunay triangulation is a triangle.

There is a unique Delaunay triangulation.
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Duality

Theorem
Under the general position assumption, the Delaunay
triangulation is a dual graph of the Voronoi diagram.

A site p ↔ a Voronoi region VR(p,S)

A Delaunay edge pq ↔ a Voronoi edge between VR(p,S)
and VR(q,S)
A Delaunay triangle ∆pqr ↔ a Voronoi vertex among
VR(p,S), VR(q,S) and VR(r ,S)
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Algorithms

Lower Bound for Time: Ω(n log n)

Convex hull of S can be computed in linear time from V (S).
O(n log n) time algorithms

Plane Sweep Algorithm
Divide and Conquer Algorithm
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Randomized Incremental Construction

General Idea
Consider a random sequence of S, (s1, s2, . . . , sn).
Let Ri be {s1, . . . , si}
From i = 4 to i = n − 1, construct V (Ri+1) from V (Ri ) by
inserting si+1.

Tasks
What is a configuration?
What is a conflict relation?
How to use conflict relations to insert a site?
How to update conflict relations?

General Position Assumption
No more than three sites are located on the same circle
→ The degree of a Voronoi vertex is exactly 3
No more than two points are located on the same line
→ The Voronoi diagram is connected
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Configuration: A Voronoi edge

A Voronoi region can not be a configuration because it
could consist of O(n) edges, i.e., it is not defined by a
constant number of sites
Consider a Voronoi edge e between VR(p,S) and
VR(q,S)

e ⊆ B(p,q)
Assume e has two endpoints v and u. Then
v = VR(p,S) ∩ VR(q,S)VR(r ,S) and
u = VR(p,S) ∩ VR(q,S)VR(s,S).
e is defined by p, q, r , s
A Voronoi edge is defined by at most 4 sites.

p

q

r
s

e
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Conflict Relation

A site t ∈ S \ R conflicts with a Voronoi edge e between
VR(p,R) and VR(q,R) if e ∩ VR(t ,R ∪ {t}) 6= ∅.

p

q

r
s

e t

Lemma
e ∩ VR(r ,R ∪ {r}) = e ∩ VR(r , {p,q, r}) (Local Test)
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Insert a Site t

Lemma
V (R) ∩ VR(t ,R ∪ {t}) is a tree

p

q

r
s

t

1 Use the conflict list to find an edge which conflicts with t .
2 From the edge to find out V (R) ∩ VR(t ,R ∪ {t})
3 Link the leaves of V (R) ∩ VR(t ,R ∪ {t}) clockwise
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Update Conflict Relations: Partial Edges

Consider an edge e′ of V (R ∪ {t}) which belongs to an
edge e of V (R)

t

e′ e

Lemma
Any site s ∈ S \ (R ∪ {t}) in conflict with e′ will conflict with e.
That is, if e′ ∩ VR(t ,R ∪ {t , s} 6= ∅, e ∩ VR(s,R ∪ {t}) 6= ∅.

The set of sites in conflict with e′ is a subset of the set of
sites in conflict with e
For each site in conflict with e, check if it conflicts with e′.

Voronoi Diagrams



Update Conflict Relations: Fully new edges

Consider an edge e′ of V (R ∪ {t}) which does not belong
to any edge of V (R)

t
e′

P

Lemma
e′ and a path of V (R) ∩ VR(t ,R ∪ {t}) will form a cycle. Let P
be the path in V (R)∩VR(t ,R ∪{t}) which forms a cycle with e′.
Any site s ∈ S \ (R ∪ {t}) in conflict with e′ will conflict with one
edge along the path.

For each site in conflict with an edge of P, check if it
conflicts with e′.
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The number of updates

Lemma
Each edge of V (R) which is destroyed due to the insertion of t
will be check at most 3 times.

An edge of V (R) contains at most one edge V (R ∪ {t})
and belongs to at most two paths which form a cycle with
an edge of V (R ∪ {t}) .

Lemma
The time to insert t is proportional to the total size of the conflict
lists for the edges of V (R) which are destroyed due to the
insertion of t
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Thank You!!
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