Theoretical Aspects of Intruder Search Course Wintersemester 2015/16 Cop and Robber Game Cont./Randomizations

Elmar Langetepe

University of Bonn

November 24th, 2015

Number of cops required, positive result

Theorem 40: For any planar graph G we have $c(G) \leq 3$.

Proof:

Two cops protect some paths, the third cop can proceed!

 OQ

Number of cops required, positive result

Lemma 39: Consider a graph G and a shortest path $P = s, v_1, v_2, \ldots, v_n, t$ between two vertices s and t in G, assume that we have two cops. After a finite number of moves the path is protected by the cops so that after a visit of the robber R of a vertex of P the robber will be catched.

- Move cop c onto some vertex $c = v_i$ of P
- Assuming, r closer to some x in s, v_1, \ldots, v_{i-1} and some y in v_{i+1}, \ldots, v_n, t . Contradiction shortest path from x and y

$$
\bullet \, d(x,c)+d(y,c) \leq d(x,r)+d(r,y)
$$

- Move toward x, finally: $d(r, v) \geq d(c, v)$ for all $v \in P$
- Now robot moves, but we can repair all the time
- r goes to some vertex r' and we have $d(r', v) \ge d(r, v) - 1 \ge d(c, v) - 1$ for all $v \in P$.
- S[o](#page-27-0)me $v' \in P$ $v' \in P$ $v' \in P$ with $d(c, v') 1 = d(r', v')$ [ex](#page-3-0)i[sts](#page-2-0), [m](#page-0-0)[ov](#page-27-0)[e t](#page-0-0)o v'

 Ω

Theorem 40: For any planar graph G we have $c(G) < 3$.

Proof:

- Case 1: All three cops occupy a single vertex c and the robber is located in one component R_i of $G \setminus \{c\}$
- Case 2: There are two different paths P_1 and P_2 from v_1 to v_2 that are protected in the sense of Lemma 39 by cops c_1 and c_2 . In this case $P_1 \cup P_2$ subdivided G into an interior, I , and an exterior region E . That is $G \setminus (P_1 \cup P_2)$ has at least two components. W.l.o.g. we assume that R is located in the exterior $E=R_i.$

Number of cops required, positive result

Theorem 40: For any planar graph G we have $c(G) \leq 3$.

Case 1 and Case 2

 OQ

Theorem 40: For any planar graph G we have $c(G) < 3$.

Case 1: Number of neighbors!

c one neighbor in R_i : Move all cops to this neighbor c' and Consider $R_{i+1} = R_i \setminus \{c'\}$. Case 1 again.

c more than one neighbor in R_i : a and b be two neighbors,

 $P(a, b)$ a shortest path in R_i between a and b. One cop remains in c, another cop protects the path $P(a, b)$ by Lemma 39. Thus $P_1 = a, c, b$ and $P_2 = P(a, b)$. Case 2 with $R_{i+1} \subset R_i$.

Number of cops required, positive result

Theorem 40: For any planar graph G we have $c(G) \leq 3$.

Case 2:

Theorem 40: For any planar graph G we have $c(G) < 3$.

Case 2:

- \bullet There is a another shortest path $P'({\sf v}_1,{\sf v}_2)$ in $P_1\cup P_2\cup R_i$ but different from P_1 and P_2 . Leaves $P_1 \cup P_2$ at x_1 , hits $P_1 \cup P_2$ again at x_2 .
- **4** There is no such path! There is a single vertex x of $P_1 \cup P_2$ so that R is in the component behind x . Move all three cops to x . Case 1 again!

Number of cops required, positive result

Shortest path $P'({\sf v}_1,{\sf v}_2)$ in $P_1\cup P_2\cup R_i$ but different from P_1 and P₂. Leaves $P_1 \cup P_2$ at x_1 , hits $P_1 \cup P_2$ again at x_2 .

Let c_3 protect $P_3 = v_1, \ldots, x_1, r_1, \ldots, r_k, x_2, \ldots, v_2$ while c_1 and c_2 protect $P_1 \cup P_2$.

Case 2 aga[in](#page-7-0): c_3 protects P_3 , c_1 [o](#page-9-0)r c_2 the re[ma](#page-7-0)inin[g](#page-8-0) o[ne](#page-0-0)[!](#page-27-0)

Aspects of randomization

- Examples for the use of randomizations
- Context of decontaminations
- Randomization for a strategy
- Beat the greedy algorithm for trees
- Randomization as part of the variant \bullet
- Probability distribution for the root
- Expected number of vertices saved

Integer LP formlation for trees (Exercise):

Minimize \sum v∈V x_v w_v so that $x_r = 0 = 0$

$$
\sum_{\substack{v \le u \\ v \in L_i}} x_v \le 1 \qquad : \text{ for every leaf } u
$$
\n
$$
\sum_{v \in L_i} x_v \le 1 \qquad : \text{ for every level } L_i, i \ge 1
$$
\n
$$
x_v \in \{0, 1\} \qquad \forall \, v \in V
$$

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R}$

 OQ

Strategy: Beat the greedy approximation

- \bullet opt_{ILP} optimal solution, opt_{RLP} fractional solution, opt_{ID} $<$ opt_{PLP}
- \bullet opt_{RLP} in polynomial time!
- Subtree T_v with $x_v = a \le 1$ is a-saved, a portion $a \cdot w_v$ of the subtree is saved
- v_1 is ancestor of v_2 and $x_{v_1} = a_1$ and $x_{v_2} = a_2$
- Vertices of $\, T_{\nu_2}$ are $(a_1 + a_2)$ -saved. The remaining vertices of T_{v_1} are only a_1 -saved.
- Randomized rounding scheme for every level
- Sum of the $x_v = a$ -values for level *i*: Probability distribution for choosing v. Shuffle and set x_v to 1.
- Sum up to less than 1: Probability of not choosing a vertex at level i.
- Only problem: *double-protections*

Strategy: Beat the greedy approximation

- double-protections: Choose vertices on the same path to a leaf! We only use the predecessor! Skip the higher level!
- No such *double-protections*: The expected approximation value would be indeed 1.
- Intuitive idea: Tree τ_{v_i} at level i is $\mathrm{\textit{fully}}$ saved by the fractional strategy!
- Worst-case: Fractional strategy has assigned a $1/i$ fraction to all vertices on the path from r to v_i . This gives 1 for T_{v_i} .
- Probability of saving v_i is: $1 (1 1/i)^i \geq 1 \frac{1}{e}$ $\frac{1}{e}$.
- Formal general proof!

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt_{RLP}. The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$ $\frac{1}{e}$.

- \bullet S_F fractional solution for opt_{RLP}
- Probabilistic rounding scheme: S_I outcome of this assignment
- Show: Expected protection of S_I is larger than $\left(1-\frac{1}{e}\right)$ $\frac{1}{e}$) times the value of S_F
- x_v^F value of x_v for the fractional strategy
- $\mathsf{x}_\mathsf{v}^{\mathit{I}}$ value $\{0,1\}$ of integer strategy
- $\mathcal{y}_{\mathcal{V}} = \sum_{\mathcal{U} \leq \mathcal{V}} \mathcal{x}_{\mathcal{U}} \in \{0, 1\}$ indicate whether \mathcal{V} is finally saved
- $y^{\mathcal{F}}_{\mathsf{v}} = \sum_{\mathsf{u} \leq \mathsf{v}} x^{\mathcal{F}}_{\mathsf{u}} \leq 1$ fraction of v saved by fractional strategy

Approximation by randomized strategy

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt_{RLP}. The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$ $\frac{1}{e}$.

For $y_v = 1$ it suffices that one of the predecessor of v was chosen. Let $r = v_0, v_1, v_2, \ldots, v_k = v$ be the path from r to v

$$
\Pr[y_{v} = 1] = 1 - \prod_{i=1}^{k} (1 - x_{v_i}^F).
$$

Explanation: The probability that ν_2 is safe is $x_1 + (1 - x_1)x_2 = 1 - (1 - x_1)(1 - x_2)$ The probability that v_3 is safe is $1-(1-x_1)(1-x_2)+(1-x_1)(1-x_2)x_3 = 1-(1-x_1)(1-x_2)(1-x_3)$ and so on.

Approximation by randomized strategy

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt $_{RIP}$. The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$ $\frac{1}{e}$.

$$
Pr[y_{v} = 1] = 1 - \prod_{i=1}^{k} (1 - x_{v_{i}}^{F})
$$

\n
$$
\geq 1 - \left(\frac{\sum_{i=1}^{k} (1 - x_{v_{i}}^{F})}{k}\right)^{k} = 1 - \left(\frac{k - \sum_{i=1}^{k} x_{v_{i}}^{F}}{k}\right)^{k}
$$

\n
$$
= 1 - \left(\frac{k - y_{v}^{F}}{k}\right)^{k}
$$

\n
$$
= 1 - \left(1 - \frac{y_{v}^{F}}{k}\right)^{k} \geq 1 - e^{-y_{v}^{F}} \geq \left(1 - \frac{1}{e}\right) y_{v}^{F}.
$$

\n
$$
\frac{x_{1} + x_{2} + \dots + x_{n}}{n} \geq \sqrt[n]{x_{1} \cdot x_{2} \cdots x_{n}}
$$

\n**Linear Langege**
\nTheoretical Aspects of Intruder Search

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt_{RLP}. The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$ $\frac{1}{e}$.

$$
\mathsf{E}(|S_I| = \sum_{v \in V} \mathsf{Pr}[y_v = 1] \ge \left(1 - \frac{1}{e}\right) \sum_{v \in V} y_v^{\mathsf{F}} = \left(1 - \frac{1}{e}\right) |S_{\mathsf{F}}|.
$$

- $G = (V, E)$ fixed number k of agents
- *k*-surviving rate, $s_k(G)$, is the expectation of the *proportion* of vertices saved
- Any vertex is root vertex with the same probability
- Classes, C, of graphs G: For constant ϵ , $s_k(G) \geq \epsilon$
- \bullet Given G, k, $v \in V$ let: $\text{sn}_k(G, v)$:number of vertices that can be protected by k agents, if the fire starts at v
- 1 $\frac{1}{|V|} \sum_{\mathsf{v}\in\mathsf{V}} \mathsf{sn}_k(\mathsf{G},\mathsf{v}) \geq \epsilon|V|$
- Class C : let the minimum number k that guarantees $s_k(G) > \epsilon$ for any $G \in \mathcal{C}$ be denoted as the firefighter-number, ffn (C) , of C.

Firefighter-Number for a class C of graphs: **Instance:** A class C of graphs $G = (V, E)$. Question: Assume that the fire breaks out at any vertex of a graph $G \in \mathcal{C}$ with the same probability. Compute ffn (C) .

 $ffn(C)$ for trees? For stars?

Planar graph: ffn (C) > 2, bipartite graph $K_{2,n-2}$.

Main Theorem: For planar graphs we have $2 \leq \text{ffn}(C) \leq 4$

 Ω

Idea for the upper bound ffn $(C) \leq 4$

- Vertices subdivided into classes X and Y
- $r \in X$ allows to save many (a linear number of) vertices
- $r \in Y$ allows to save only few (almost zero) vertices
- Finally, $|Y| \le c|X|$ gives the bound
- Simpler result first!

Theorem: For planar graphs G with no 3- and 4-cycle, we have $s_2(G) > 1/22$.

- Euler formula, $c + 1 = v e + f$, for planar graphs, e edges, v vertices, f faces and c components
- Planar graph with no 3- and 4-cycle has average degree less than $\frac{10}{3}$
- Assume $\frac{10}{3}$ v ≥ 2 e! Which is $v \geq \frac{3}{5}$ $rac{3}{5}$ e
- Also conclude $5f < 2e$.
- Insert, contradiction!
- Similar arguments: A graph with no 3-, 4 and 5-cylces has average degree less than 3!

Theorem: For planar graphs G with no 3- and 4-cycle, we have $s_2(G) > 1/22$.

Subdivide the vertices V of G into groups w.r.t. the degree and the neighborship

- Let X_2 denote the vertices of degree ≤ 2 .
- Let Y_4 denote the vertices of degree > 4 .
- Let X_3 denote the vertices of degree exactly 3 but with at least one neighbor of degree \leq 3.
- \bullet Let Y_3 denote the vertices of degree exacly 3 but with all neighbors having degree > 3 (degree 3 vertices not in X_3).

Let x_2, x_3, y_3 and y_4 denote cardinality of the sets

Theorem: For planar graphs G with no 3- and 4-cycle, we have $s_2(G) \geq 1/22$.

•
$$
|V| = n, x_2 + x_3 + y_3 + y_4 = n
$$

•
$$
v \in X_2
$$
: save $n-2$ vertices

•
$$
v \in X_3
$$
: save $n-2$ vertices

• For starting vertices in Y_3 and Y_4 , we assume that we can save nothing!

• Show:
$$
s_2(G) \cdot n = \frac{1}{n} \sum_{v \in V} \text{sn}_k(G, v) \geq \epsilon \cdot n
$$

$$
\frac{1}{n^2}\sum_{v\in V}\operatorname{sn}_k(G,v)\geq \frac{1}{n^2}(x_2+x_3)(n-2)=\frac{n-2}{n}\cdot \frac{x_2+x_3}{x_2+x_3+y_3+y_4}
$$

 OQ

イヨメ イヨメ

Theorem: For planar graphs G with no 3- and 4-cycle, we have $s_2(G) > 1/22$.

- Fixed relation between $x_2 + x_3$ and $y_3 + y_4$
- First: Correspondance between Y_3 and Y_4
- $G_Y = (V_Y, E_Y)$: Edges of G with precisely one vertex in Y_3 and one vertex in Y_4
- $3y_3$ edges, at most $y_3 + y_4$ vertices, bipartite
- Cylce: Forth and back from Y_3 to Y_4
- No cycle of size 5!
- Average degree of vertices of G_Y is at most 3
- Counting $3(y_3 + y_4)$, counts at least any edge twice, so $3(y_3 + y_4) > 6y_3$
- $y_3 < y_4$

∢ 重 ≯ → 重 ≯ →

Theorem: For planar graphs G with no 3- and 4-cycle, we have $s_2(G) \geq 1/22$.

- Fixed relation between $x_2 + x_3$ and $y_3 + y_4$, $y_3 \le y_4$
- Counting $\frac{10}{3}(x_2+x_3+y_3+y_4)$ edges we have at least counted $3x_3 + 3y_3 + 4y_4$ edges
- $9x_3 + 9y_3 + 12y_4 \le 10(x_2 + x_3 + y_3 + y_4)$
- \bullet 2 $v_4 v_3 < 10x_2 + x_3$
- By $y_3 < y_4$ we have $y_4 < 10x_2 + x_3$
- Finally: $y_3 + y_4 < 20x_2 + 2x_3 < 20(x_2 + x_3)$

Theorem: For planar graphs G with no 3- and 4-cycle, we have $s_2(G) \geq 1/22$.

Finally:
$$
y_3 + y_4 \le 20x_2 + 2x_3 \le 20(x_2 + x_3)
$$

\n
$$
\frac{n-2}{n} \cdot \frac{x_2 + x_3}{x_2 + x_3 + y_3 + y_4} \ge \frac{n-2}{n} \cdot \frac{x_2 + x_3}{21(x_2 + x_3)} = \frac{n-2}{21n}.
$$
 (1)

 \bullet $n = 2$: one vertex distinct from the root

$$
\bullet \ \ 3 \leq n \leq 44 \colon \text{at least } \tfrac{2}{44}
$$

•
$$
n \ge 44
$$
: $s_2(G) \ge \frac{42}{21.44} = \frac{1}{22}$.

Expected value of saved vertices is always $\frac{1}{22}n$.

 $\left\{ \begin{array}{ccc} \pm & \rightarrow & \leftarrow & \pm & \rightarrow \end{array} \right.$

Theorem 44: Using four firefighters in the first step and then always three firefighters in each step, for every planar graph G there is a strategy such that $s_4(G) \geq \frac{1}{2712}$ holds.

- Maximal, planar without multi-edges.
- Triangulation, any face has exactly 3 edges
- \bullet Subdivide V of G into sets X and Y
- \bullet X will be the set of vertices strategy saves at least $n 6$ vertices
- Y we do not expect to save any vertex, for $|V| = n$
- Final conclusion is that for some $\alpha = \frac{1}{87}$ 872

$$
|Y| \le \left(93 + \frac{3}{\alpha}\right)|X| = 2709|X|.
$$
 (2)

Warm up for planar graphs

Theorem 44: Using four firefighters in the first step and then always three firefighters in each step, for every planar graph G there is a strategy such that $s_4(G) \geq \frac{1}{2712}$ holds.

$$
|Y| \le \left(93 + \frac{3}{\alpha}\right)|X| = 2709|X|.
$$
 (3)

Thus from $|X| + |Y| = n$ we conclude

$$
s_4(G) \ge \frac{n-6}{n} \cdot \frac{|X|}{|X|+|Y|} > \frac{n-2}{n} \cdot \frac{|X|}{2710|X|} = \frac{n-6}{2710n}.
$$

For $n > 10846$ we have

$$
s_4(G) \geq \frac{1}{2710} - \frac{6}{4 \cdot 2710^2} \geq \frac{2710 - 3/2}{2710^2} \geq \frac{1}{2712}
$$

For $2 \leq n < 10846$ we save at least min(4, $n-1$) in the first step, which gives also $s_4(G) \geq \frac{1}{2712}$.