Theoretical Aspects of Intruder Search Course Wintersemester 2015/16 Cop and Robber Game Cont./Randomizations

Elmar Langetepe

University of Bonn

November 24th, 2015

Number of cops required, positive result

Theorem 40: For any planar graph G we have $c(G) \leq 3$.

Proof:

• Two cops protect some paths, the third cop can proceed!

Number of cops required, positive result

Lemma 39: Consider a graph *G* and a shortest path $P = s, v_1, v_2, \ldots, v_n, t$ between two vertices *s* and *t* in *G*, assume that we have two cops. After a finite number of moves the path is protected by the cops so that after a visit of the robber *R* of a vertex of *P* the robber will be catched.

- Move cop c onto some vertex $c = v_i$ of P
- Assuming, r closer to some x in s, v_1, \ldots, v_{i-1} and some y in v_{i+1}, \ldots, v_n, t . Contradiction shortest path from x and y

•
$$d(x,c) + d(y,c) \le d(x,r) + d(r,y)$$

- Move toward x, finally: $d(r, v) \ge d(c, v)$ for all $v \in P$
- Now robot moves, but we can repair all the time

•
$$r$$
 goes to some vertex r' and we have $d(r', v) \ge d(r, v) - 1 \ge d(c, v) - 1$ for all $v \in P$.

• Some $v' \in P$ with d(c, v') - 1 = d(r', v') exists, move to v'

Theorem 40: For any planar graph *G* we have $c(G) \leq 3$.

Proof:

- Case 1: All three cops occupy a single vertex c and the robber is located in one component R_i of $G \setminus \{c\}$
- Case 2: There are two different paths P_1 and P_2 from v_1 to v_2 that are protected in the sense of Lemma 39 by cops c_1 and c_2 . In this case $P_1 \cup P_2$ subdivided G into an interior, I, and an exterior region E. That is $G \setminus (P_1 \cup P_2)$ has at least two components. W.l.o.g. we assume that R is located in the exterior $E = R_i$.

Number of cops required, positive result

Theorem 40: For any planar graph *G* we have $c(G) \leq 3$.

Case 1 and Case 2

Theorem 40: For any planar graph G we have $c(G) \leq 3$.

Case 1: Number of neighbors!

c one neighbor in R_i : Move all cops to this neighbor c' and Consider $R_{i+1} = R_i \setminus \{c'\}$. Case 1 again.

c more than one neighbor in R_i : a and b be two neighbors,

P(a, b) a shortest path in R_i between a and b. One cop remains in c, another cop protects the path P(a, b) by Lemma 39. Thus $P_1 = a, c, b$ and $P_2 = P(a, b)$. Case 2 with $R_{i+1} \subset R_i$.

Number of cops required, positive result

Theorem 40: For any planar graph *G* we have $c(G) \leq 3$.

Case 2:

Elmar Langetepe Theoretical Aspects of Intruder Search

Theorem 40: For any planar graph *G* we have $c(G) \leq 3$.

Case 2:

- There is a another shortest path P'(v₁, v₂) in P₁ ∪ P₂ ∪ R_i but different from P₁ and P₂. Leaves P₁ ∪ P₂ at x₁, hits P₁ ∪ P₂ again at x₂.
- There is no such path! There is a single vertex x of P₁ ∪ P₂ so that R is in the component behind x. Move all three cops to x. Case 1 again!

Number of cops required, positive result

Shortest path $P'(v_1, v_2)$ in $P_1 \cup P_2 \cup R_i$ but different from P_1 and P_2 . Leaves $P_1 \cup P_2$ at x_1 , hits $P_1 \cup P_2$ again at x_2 .

Let c_3 protect $P_3 = v_1, \ldots, x_1, r_1, \ldots, r_k, x_2, \ldots, v_2$ while c_1 and c_2 protect $P_1 \cup P_2$.

Case 2 again: c_3 protects P_3 , c_1 or c_2 the remaining one!

Aspects of randomization

- Examples for the use of randomizations
- Context of decontaminations
- Randomization for a strategy
- Beat the greedy algorithm for trees
- Randomization as part of the variant
- Probability distribution for the root
- Expected number of vertices saved

Integer LP formlation for trees (Exercise):

$$\begin{split} \sum_{\substack{\nu \leq u \\ \nu \leq L_i}} & x_{\nu} & \leq 1 & : & \text{for every leaf } u \\ \sum_{\substack{\nu \in L_i \\ \nu \in V}} & x_{\nu} & \leq 1 & : & \text{for every level } L_i, i \geq 1 \\ & x_{\nu} & \in \{0,1\} & : & \forall \nu \in V \end{split}$$

∃ ► < ∃ ► ...</p>

DQ P

Strategy: Beat the greedy approximation

- opt_{ILP} optimal solution, opt_{RLP} fractional solution, $opt_{ILP} \leq opt_{RLP}$
- opt_{*RLP*} in polynomial time!
- Subtree T_v with $x_v = a \le 1$ is *a-saved*, a portion $a \cdot w_v$ of the subtree is saved
- v_1 is ancestor of v_2 and $x_{v_1} = a_1$ and $x_{v_2} = a_2$
- Vertices of T_{v_2} are $(a_1 + a_2)$ -saved. The remaining vertices of T_{v_1} are only a_1 -saved.
- Randomized rounding scheme for every level
- Sum of the x_v = a-values for level i: Probability distribution for choosing v. Shuffle and set x_v to 1.
- Sum up to less than 1: Probability of not choosing a vertex at level *i*.
- Only problem: *double-protections*

DQ P

Strategy: Beat the greedy approximation

- *double-protections*: Choose vertices on the same path to a leaf! We only use the predecessor! Skip the higher level!
- No such *double-protections*: The expected approximation value would be indeed 1.
- Intuitive idea: Tree T_{vi} at level i is fully saved by the fractional strategy!
- Worst-case: Fractional strategy has assigned a 1/i fraction to all vertices on the path from r to v_i . This gives 1 for T_{v_i} .
- Probability of saving v_i is: $1 (1 1/i)^i \ge 1 \frac{1}{e}$.
- Formal general proof!

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt_{RLP} . The expected approximation ratio of the above strategy for the number of vertices protected is $(1 - \frac{1}{e})$.

- S_F fractional solution for opt_{RLP}
- Probabilistic rounding scheme: S_I outcome of this assignment
- Show: Expected protection of S_I is larger than $\left(1-\frac{1}{e}\right)$ times the value of S_F
- x_v^F value of x_v for the fractional strategy
- x_v^l value $\{0,1\}$ of integer strategy
- $y_v = \sum_{u \leq v} x_u \in \{0,1\}$ indicate whether v is finally saved
- $y_v^F = \sum_{u \leq v} x_u^F \leq 1$ fraction of v saved by fractional strategy

Approximation by randomized strategy

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt_{RLP} . The expected approximation ratio of the above strategy for the number of vertices protected is $(1 - \frac{1}{e})$.

For $y_v = 1$ it suffices that one of the predecessor of v was chosen. Let $r = v_0, v_1, v_2, \ldots, v_k = v$ be the path from r to v

$$\Pr[y_{v} = 1] = 1 - \prod_{i=1}^{k} (1 - x_{v_{i}}^{F}).$$

Explanation: The probability that v_2 is safe is $x_1 + (1 - x_1)x_2 = 1 - (1 - x_1)(1 - x_2)$ The probability that v_3 is safe is $1 - (1 - x_1)(1 - x_2) + (1 - x_1)(1 - x_2)x_3 = 1 - (1 - x_1)(1 - x_2)(1 - x_3)$ and so on.

Approximation by randomized strategy

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt_{RLP} . The expected approximation ratio of the above strategy for the number of vertices protected is $(1 - \frac{1}{e})$.

Theorem 41: Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt_{RLP} . The expected approximation ratio of the above strategy for the number of vertices protected is $(1 - \frac{1}{e})$.

$$\mathbf{E}(|S_I| = \sum_{v \in V} \Pr[y_v = 1] \ge \left(1 - \frac{1}{e}\right) \sum_{v \in V} y_v^F = \left(1 - \frac{1}{e}\right) |S_F|.$$

Randomization in variants of the problem

- G = (V, E) fixed number k of agents
- *k*-surviving rate, *s_k(G)*, is the expectation of the *proportion* of vertices saved
- Any vertex is root vertex with the same probability
- Classes, C, of graphs G: For constant ϵ , $s_k(G) \ge \epsilon$
- Given G, k, v ∈ V let: sn_k(G, v):number of vertices that can be protected by k agents, if the fire starts at v

•
$$\frac{1}{|V|} \sum_{v \in V} \operatorname{sn}_k(G, v) \ge \epsilon |V|$$

Class C: let the minimum number k that guarantees s_k(G) > ε for any G ∈ C be denoted as the firefighter-number, ffn(C), of C.

Firefighter-Number for a class C of graphs: **Instance:** A class C of graphs G = (V, E). **Question:** Assume that the fire breaks out at any vertex of a graph $G \in C$ with the same probability. Compute ffn(C).

ffn(C) for trees? For stars?

Planar graph: $ffn(C) \ge 2$, bipartite graph $K_{2,n-2}$.

Main Theorem: For planar graphs we have $2 \leq \text{ffn}(C) \leq 4$

Idea for the upper bound $ffn(C) \leq 4$

- Vertices subdivided into classes X and Y
- $r \in X$ allows to save many (a linear number of) vertices
- $r \in Y$ allows to save only few (almost zero) vertices
- \bullet Finally, $|Y| \leq c |X|$ gives the bound
- Simpler result first!

- Euler formula, c + 1 = v e + f, for planar graphs, e edges, v vertices, f faces and c components
- Planar graph with no 3- and 4-cycle has average degree less than $\frac{10}{3}$
- Assume $\frac{10}{3}v \ge 2e!$ Which is $v \ge \frac{3}{5}e$
- Also conclude $5f \leq 2e$.
- Insert, contradiction!
- Similar arguments: A graph with no 3-, 4 and 5-cylces has average degree less than 3!

Subdivide the vertices V of ${\cal G}$ into groups w.r.t. the degree and the neighborship

- Let X_2 denote the vertices of degree ≤ 2 .
- Let Y_4 denote the vertices of degree ≥ 4 .
- Let X₃ denote the vertices of degree exactly 3 but with at least one neighbor of degree ≤ 3.
- Let Y₃ denote the vertices of degree exacly 3 but with all neighbors having degree > 3 (degree 3 vertices not in X₃).

Let x_2, x_3, y_3 and y_4 denote cardinality of the sets

•
$$|V| = n, x_2 + x_3 + y_3 + y_4 = n$$

• $v \in X_2$: save n-2 vertices

•
$$v \in X_3$$
: save $n-2$ vertices

• For starting vertices in Y₃ and Y₄, we assume that we can save nothing!

• Show:
$$s_2(G) \cdot n = \frac{1}{n} \sum_{v \in V} \operatorname{sn}_k(G, v) \ge \epsilon \cdot n$$

$$\frac{1}{n^2}\sum_{v\in V}\operatorname{sn}_k(G,v) \geq \frac{1}{n^2}(x_2+x_3)(n-2) = \frac{n-2}{n} \cdot \frac{x_2+x_3}{x_2+x_3+y_3+y_4}$$

- Fixed relation between $x_2 + x_3$ and $y_3 + y_4$
- First: Correspondance between Y_3 and Y_4
- $G_Y = (V_Y, E_Y)$: Edges of G with precisely one vertex in Y_3 and one vertex in Y_4
- $3y_3$ edges, at most $y_3 + y_4$ vertices, bipartite
- Cylce: Forth and back from Y_3 to Y_4
- No cycle of size 5!
- Average degree of vertices of G_Y is at most 3
- Counting $3(y_3 + y_4)$, counts at least any edge twice, so $3(y_3 + y_4) \ge 6y_3$
- $y_3 \leq y_4$

DQ P

- Fixed relation between $x_2 + x_3$ and $y_3 + y_4$, $y_3 \le y_4$
- Counting $\frac{10}{3}(x_2 + x_3 + y_3 + y_4)$ edges we have at least counted $3x_3 + 3y_3 + 4y_4$ edges
- $9x_3 + 9y_3 + 12y_4 \le 10(x_2 + x_3 + y_3 + y_4)$

•
$$2y_4 - y_3 \le 10x_2 + x_3$$

- By $y_3 \leq y_4$ we have $y_4 \leq 10x_2 + x_3$
- Finally: $y_3 + y_4 \le 20x_2 + 2x_3 \le 20(x_2 + x_3)$

Finally: $y_3 + y_4 \le 20x_2 + 2x_3 \le 20(x_2 + x_3)$ $\frac{n-2}{n} \cdot \frac{x_2 + x_3}{x_2 + x_3 + y_3 + y_4} \ge \frac{n-2}{n} \cdot \frac{x_2 + x_3}{21(x_2 + x_3)} = \frac{n-2}{21n}.$ (1)

- n = 2: one vertex distinct from the root
- $3 \le n \le 44$: at least $\frac{2}{44}$
- $n \ge 44$: $s_2(G) \ge \frac{42}{21 \cdot 44} = \frac{1}{22}$.
- Expected value of saved vertices is always $\frac{1}{22}n$.

DQ P

Theorem 44: Using four firefighters in the first step and then always three firefighters in each step, for every planar graph G there is a strategy such that $s_4(G) \ge \frac{1}{2712}$ holds.

- Maximal, planar without multi-edges.
- Triangulation, any face has exactly 3 edges
- Subdivide V of G into sets X and Y.
- 𝑋 will be the set of vertices strategy saves at least 𝑘 − 6 vertices
- Y we do not expect to save any vertex, for |V| = n
- Final conclusion is that for some $\alpha = \frac{1}{872}$

$$|Y| \le \left(93 + \frac{3}{\alpha}\right)|X| = 2709|X|.$$
(2)

Warm up for planar graphs

Theorem 44: Using four firefighters in the first step and then always three firefighters in each step, for every planar graph G there is a strategy such that $s_4(G) \ge \frac{1}{2712}$ holds.

$$|Y| \le \left(93 + \frac{3}{\alpha}\right)|X| = 2709|X|.$$
(3)

Thus from |X| + |Y| = n we conclude

$$s_4(G) \geq \frac{n-6}{n} \cdot \frac{|X|}{|X|+|Y|} > \frac{n-2}{n} \cdot \frac{|X|}{2710|X|} = \frac{n-6}{2710n}.$$

For $n \ge 10846$ we have

$$s_4(G) \ge rac{1}{2710} - rac{6}{4 \cdot 2710^2} \ge rac{2710 - 3/2}{2710^2} \ge rac{1}{2712}$$

For $2 \le n < 10846$ we save at least min(4, n - 1) in the first step, which gives also $s_4(G) \ge \frac{1}{2712}$.