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Number of cops required, positive result

Theorem 40: For any planar graph G we have c(G ) ≤ 3.

Proof:

Two cops protect some paths, the third cop can proceed!
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Number of cops required, positive result

Lemma 39: Consider a graph G and a shortest path
P = s, v1, v2, . . . , vn, t between two vertices s and t in G , assume
that we have two cops. After a finite number of moves the path is
protected by the cops so that after a visit of the robber R of a
vertex of P the robber will be catched.

Move cop c onto some vertex c = vi of P

Assuming, r closer to some x in s, v1, . . . , vi−1 and some y in
vi+1, . . . , vn, t. Contradiction shortest path from x and y

d(x , c) + d(y , c) ≤ d(x , r) + d(r , y)

Move toward x , finally: d(r , v) ≥ d(c , v) for all v ∈ P

Now robot moves, but we can repair all the time

r goes to some vertex r ′ and we have
d(r ′, v) ≥ d(r , v)− 1 ≥ d(c , v)− 1 for all v ∈ P .

Some v ′ ∈ P with d(c , v ′)− 1 = d(r ′, v ′) exists, move to v ′
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Number of cops required, positive result

Theorem 40: For any planar graph G we have c(G ) ≤ 3.

Proof:

Case 1: All three cops occupy a single vertex c and the
robber is located in one component Ri of G \ {c}

Case 2: There are two different paths P1 and P2 from v1 to
v2 that are protected in the sense of Lemma 39 by
cops c1 and c2. In this case P1 ∪ P2 subdivided G
into an interior, I , and an exterior region E . That is
G \ (P1 ∪ P2) has at least two components. W.l.o.g.
we assume that R is located in the exterior E = Ri .
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Number of cops required, positive result

Theorem 40: For any planar graph G we have c(G ) ≤ 3.

Case 1 and Case 2

c

Ri

c2

v1

P2P1
c1

v2

Ri

Elmar Langetepe Theoretical Aspects of Intruder Search



Number of cops required, positive result

Theorem 40: For any planar graph G we have c(G ) ≤ 3.

Case 1: Number of neighbors!

c one neighbor in Ri : Move all cops to this neighbor c ′ and
Consider Ri+1 = Ri \ {c ′}. Case 1 again.

c more than one neighbor in Ri : a and b be two neighbors,
P(a, b) a shortest path in Ri between a and b. One
cop remains in c , another cop protects the path
P(a, b) by Lemma 39. Thus P1 = a, c , b and
P2 = P(a, b). Case 2 with Ri+1 ⊂ Ri .
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Number of cops required, positive result

Theorem 40: For any planar graph G we have c(G ) ≤ 3.

Case 2:
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Number of cops required, positive result

Theorem 40: For any planar graph G we have c(G ) ≤ 3.

Case 2:

1 There is a another shortest path P ′(v1, v2) in P1 ∪ P2 ∪ Ri but
different from P1 and P2. Leaves P1 ∪ P2 at x1, hits P1 ∪ P2

again at x2.

2 There is no such path! There is a single vertex x of P1 ∪ P2 so
that R is in the component behind x . Move all three cops to
x . Case 1 again!
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Number of cops required, positive result

Shortest path P ′(v1, v2) in P1 ∪ P2 ∪ Ri but different from P1 and
P2. Leaves P1 ∪ P2 at x1, hits P1 ∪ P2 again at x2.
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Let c3 protect P3 = v1, . . . , x1, r1, . . . , rk , x2, . . . , v2 while c1 and c2
protect P1 ∪ P2.

Case 2 again: c3 protects P3, c1 or c2 the remaining one!

Elmar Langetepe Theoretical Aspects of Intruder Search



Aspects of randomization

Examples for the use of randomizations

Context of decontaminations

Randomization for a strategy

Beat the greedy algorithm for trees

Randomization as part of the variant

Probability distribution for the root

Expected number of vertices saved
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Beat the greedy approximation

Integer LP formlation for trees (Exercise):

Minimize
∑
v∈V

xvwv

so that xr = 0 = 0∑
v≤u

xv ≤ 1 : for every leaf u∑
v∈Li

xv ≤ 1 : for every level Li , i ≥ 1

xv ∈ {0, 1} : ∀ v ∈ V
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Strategy: Beat the greedy approximation

optILP optimal solution, optRLP fractional solution,
optILP ≤ optRLP

optRLP in polynomial time!

Subtree Tv with xv = a ≤ 1 is a-saved, a portion a · wv of the
subtree is saved

v1 is ancestor of v2 and xv1 = a1 and xv2 = a2

Vertices of Tv2 are (a1 + a2)-saved. The remaining vertices of
Tv1 are only a1-saved.

Randomized rounding scheme for every level

Sum of the xv = a-values for level i : Probability distribution
for choosing v . Shuffle and set xv to 1.

Sum up to less than 1: Probability of not choosing a vertex at
level i .

Only problem: double-protections
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Strategy: Beat the greedy approximation

double-protections: Choose vertices on the same path to a
leaf! We only use the predecessor! Skip the higher level!

No such double-protections: The expected approximation
value would be indeed 1.

Intuitive idea: Tree Tvi at level i is fully saved by the
fractional strategy!

Worst-case: Fractional strategy has assigned a 1/i fraction to
all vertices on the path from r to vi . This gives 1 for Tvi .

Probability of saving vi is: 1− (1− 1/i)i ≥ 1− 1
e .

Formal general proof!
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Approximation by randomized strategy

Theorem 41: Consider an algorithm that protects the vertices
w.r.t. the probability distribution given by optRLP . The expected
approximation ratio of the above strategy for the number of
vertices protected is

(
1− 1

e

)
.

SF fractional solution for optRLP
Probabilistic rounding scheme: SI outcome of this assignment

Show: Expected protection of SI is larger than
(
1− 1

e

)
times

the value of SF

xF
v value of xv for the fractional strategy

x I
v value {0, 1} of integer strategy

yv =
∑

u≤v xu ∈ {0, 1} indicate whether v is finally saved

yF
v =

∑
u≤v xF

u ≤ 1 fraction of v saved by fractional strategy
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Approximation by randomized strategy

Theorem 41: Consider an algorithm that protects the vertices
w.r.t. the probability distribution given by optRLP . The expected
approximation ratio of the above strategy for the number of
vertices protected is

(
1− 1

e

)
.

For yv = 1 it suffices that one of the predecessor of v was chosen.
Let r = v0, v1, v2, . . . , vk = v be the path from r to v

Pr[yv = 1] = 1−
k∏

i=1

(1− xF
vi

) .

Explanation: The probability that v2 is safe is
x1 + (1− x1)x2 = 1− (1− x1)(1− x2)
The probability that v3 is safe is
1−(1−x1)(1−x2)+(1−x1)(1−x2)x3 = 1−(1−x1)(1−x2)(1−x3)
and so on.
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Approximation by randomized strategy

Theorem 41: Consider an algorithm that protects the vertices
w.r.t. the probability distribution given by optRLP . The expected
approximation ratio of the above strategy for the number of
vertices protected is

(
1− 1

e

)
.

Pr[yv = 1] = 1−
k∏

i=1

(1− xF
vi

)

≥ 1−

(∑k
i=1(1− xF

vi
)

k

)k

= 1−

(
k −

∑k
i=1 xF

vi

k

)k

= 1−
(

k − yF
v

k

)k

= 1−
(

1− yF
v

k

)k

≥ 1− e−y
F
v ≥

(
1− 1

e

)
yF
v .

x1+x2+···+xn
n ≥ n

√
x1 · x2 · · · xn
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Approximation by randomized strategy

Theorem 41: Consider an algorithm that protects the vertices
w.r.t. the probability distribution given by optRLP . The expected
approximation ratio of the above strategy for the number of
vertices protected is

(
1− 1

e

)
.

E(|SI | =
∑
v∈V

Pr[yv = 1] ≥
(

1− 1

e

)∑
v∈V

yF
v =

(
1− 1

e

)
|SF | .
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Randomization in variants of the problem

G = (V ,E ) fixed number k of agents

k-surviving rate, sk(G ), is the expectation of the proportion of
vertices saved

Any vertex is root vertex with the same probability

Classes, C , of graphs G : For constant ε, sk(G ) ≥ ε
Given G , k, v ∈ V let:
snk(G , v):number of vertices that can be protected by k
agents, if the fire starts at v
1
|V |
∑

v∈V snk(G , v) ≥ ε|V |
Class C : let the minimum number k that guarantees
sk(G ) > ε for any G ∈ C be denoted as the
firefighter-number, ffn(C ), of C .
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Randomization in variants of the problem

Firefighter-Number for a class C of graphs:
Instance: A class C of graphs G = (V ,E ).
Question: Assume that the fire breaks out at any vertex of a
graph G ∈ C with the same probability. Compute ffn(C ).

ffn(C ) for trees? For stars?

Planar graph: ffn(C ) ≥ 2, bipartite graph K2,n−2.

Main Theorem: For planar graphs we have 2 ≤ ffn(C ) ≤ 4
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Idea for the upper bound ffn(C ) ≤ 4

Vertices subdivided into classes X and Y

r ∈ X allows to save many (a linear number of) vertices

r ∈ Y allows to save only few (almost zero) vertices

Finally, |Y | ≤ c |X | gives the bound

Simpler result first!
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Simple proof!

Theorem : For planar graphs G with no 3- and 4-cycle, we have
s2(G ) ≥ 1/22.

Euler formula, c + 1 = v − e + f , for planar graphs, e edges,
v vertices, f faces and c components

Planar graph with no 3- and 4-cycle has average degree less
than 10

3

Assume 10
3 v ≥ 2e! Which is v ≥ 3

5e

Also conclude 5f ≤ 2e.

Insert, contradiction!

Similar arguments: A graph with no 3-, 4 and 5-cylces has
average degree less than 3!
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Simple proof!

Theorem : For planar graphs G with no 3- and 4-cycle, we have
s2(G ) ≥ 1/22.

Subdivide the vertices V of G into groups w.r.t. the degree and
the neighborship

Let X2 denote the vertices of degree ≤ 2.

Let Y4 denote the vertices of degree ≥ 4.

Let X3 denote the vertices of degree exactly 3 but with at
least one neighbor of degree ≤ 3.

Let Y3 denote the vertices of degree exacly 3 but with all
neighbors having degree > 3 (degree 3 vertices not in X3).

Let x2,x3,y3 and y4 denote cardinality of the sets
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Simple proof!

Theorem : For planar graphs G with no 3- and 4-cycle, we have
s2(G ) ≥ 1/22.

|V | = n, x2 + x3 + y3 + y4 = n

v ∈ X2: save n − 2 vertices

v ∈ X3: save n − 2 vertices

For starting vertices in Y3 and Y4, we assume that we can
save nothing!

Show: s2(G ) · n = 1
n

∑
v∈V snk(G , v) ≥ ε · n

1

n2

∑
v∈V

snk(G , v) ≥ 1

n2
(x2 + x3)(n− 2) =

n − 2

n
· x2 + x3

x2 + x3 + y3 + y4
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Simple proof!

Theorem : For planar graphs G with no 3- and 4-cycle, we have
s2(G ) ≥ 1/22.

Fixed relation between x2 + x3 and y3 + y4

First: Correspondance between Y3 and Y4

GY = (VY ,EY ): Edges of G with precisely one vertex in Y3

and one vertex in Y4

3y3 edges, at most y3 + y4 vertices, bipartite

Cylce: Forth and back from Y3 to Y4

No cycle of size 5!

Average degree of vertices of GY is at most 3

Counting 3(y3 + y4), counts at least any edge twice, so
3(y3 + y4) ≥ 6y3

y3 ≤ y4

Elmar Langetepe Theoretical Aspects of Intruder Search



Simple proof!

Theorem : For planar graphs G with no 3- and 4-cycle, we have
s2(G ) ≥ 1/22.

Fixed relation between x2 + x3 and y3 + y4, y3 ≤ y4

Counting 10
3 (x2 + x3 + y3 + y4) edges we have at least

counted 3x3 + 3y3 + 4y4 edges

9x3 + 9y3 + 12y4 ≤ 10(x2 + x3 + y3 + y4)

2y4 − y3 ≤ 10x2 + x3

By y3 ≤ y4 we have y4 ≤ 10x2 + x3

Finally: y3 + y4 ≤ 20x2 + 2x3 ≤ 20(x2 + x3)
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Simple proof!

Theorem : For planar graphs G with no 3- and 4-cycle, we have
s2(G ) ≥ 1/22.

Finally: y3 + y4 ≤ 20x2 + 2x3 ≤ 20(x2 + x3)

n − 2

n
· x2 + x3

x2 + x3 + y3 + y4
≥ n − 2

n
· x2 + x3

21(x2 + x3)
=

n − 2

21n
. (1)

n = 2: one vertex distinct from the root

3 ≤ n ≤ 44: at least 2
44

n ≥ 44: s2(G ) ≥ 42
21·44 = 1

22 .

Expected value of saved vertices is always 1
22n.
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Warm up for planar graphs

Theorem 44: Using four firefighters in the first step and then
always three firefighters in each step, for every planar graph G
there is a strategy such that s4(G ) ≥ 1

2712 holds.

Maximal, planar without multi-edges.

Triangulation, any face has exactly 3 edges

Subdivide V of G into sets X and Y .

X will be the set of vertices strategy saves at least n − 6
vertices

Y we do not expect to save any vertex, for |V | = n

Final conclusion is that for some α = 1
872

|Y | ≤
(

93 +
3

α

)
|X | = 2709|X | . (2)
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Warm up for planar graphs

Theorem 44: Using four firefighters in the first step and then
always three firefighters in each step, for every planar graph G
there is a strategy such that s4(G ) ≥ 1

2712 holds.

|Y | ≤
(

93 +
3

α

)
|X | = 2709|X | . (3)

Thus from |X |+ |Y | = n we conclude

s4(G ) ≥ n − 6

n
· |X |
|X |+ |Y |

>
n − 2

n
· |X |

2710|X |
=

n − 6

2710n
.

For n ≥ 10846 we have

s4(G ) ≥ 1

2710
− 6

4 · 27102
≥ 2710− 3/2

27102
≥ 1

2712

For 2 ≤ n < 10846 we save at least min(4, n − 1) in the first step,
which gives also s4(G ) ≥ 1

2712 .
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